Random permutations: the general parametric model
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 105-112
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest a new approach to the study of the structural properties of random permutations based on defining some general parametric measure on the set $S_n$ of all permutations of degree $n$ which assigns to a permutation with cyclic structure $a=(a_1,\dots,a_n)$ the probability proportional to $\prod_{i=1}^n\theta_i^{a_i}$, where $\theta=(\theta_1,\dots,\theta_n)$ is a parameter of the measure.
@article{DM_2006_18_4_a9,
author = {G. I. Ivchenko and Yu. I. Medvedev},
title = {Random permutations: the general parametric model},
journal = {Diskretnaya Matematika},
pages = {105--112},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a9/}
}
G. I. Ivchenko; Yu. I. Medvedev. Random permutations: the general parametric model. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 105-112. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a9/