A Poisson limit theorem for a two-stage equiprobable scheme of allocating particles into cells
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 99-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-stage scheme of allocating particles into cells. At the first stage, $N_0$ initial particles are independently and equiprobably allocated into $N_1$ cells of the first layer. At the second stage, these $N_1$ cells are taken as particles which are independently and equiprobably allocated into $N_2$ cells of the second layer. We present conditions under which the distribution of the number of cells of the second layer containing exactly $r$ particles converges to the Poisson law.
@article{DM_2006_18_4_a8,
     author = {A. M. Zubkov and O. K. Shibanov},
     title = {A {Poisson} limit theorem for a two-stage equiprobable scheme of allocating particles into cells},
     journal = {Diskretnaya Matematika},
     pages = {99--104},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a8/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - O. K. Shibanov
TI  - A Poisson limit theorem for a two-stage equiprobable scheme of allocating particles into cells
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 99
EP  - 104
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_4_a8/
LA  - ru
ID  - DM_2006_18_4_a8
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A O. K. Shibanov
%T A Poisson limit theorem for a two-stage equiprobable scheme of allocating particles into cells
%J Diskretnaya Matematika
%D 2006
%P 99-104
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_4_a8/
%G ru
%F DM_2006_18_4_a8
A. M. Zubkov; O. K. Shibanov. A Poisson limit theorem for a two-stage equiprobable scheme of allocating particles into cells. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 99-104. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a8/

[1] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976

[2] Zubkov A. M., Shibanov O. K., “Mnogostupenchatye skhemy razmescheniya chastits po yacheikam”, Obozrenie prikladnoi i promyshlennoi matematiki, 9:1 (2002), 115–116 | MR

[3] Zubkov A. M., Shibanov O. K., “Dvukhstupenchataya skhema razmescheniya chastits po yacheikam”, Obozrenie prikladnoi i promyshlennoi matematiki, 9:2 (2002), 378–379