On circuits of functional elements of finite depth of branching
Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 73-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of the depth of branching of a circuit of functional elements and consider classes of circuits of branching depth bounded by a constant. For these classes of circuits over various bases we obtain lower and upper bounds for complexity of a linear Boolean function. We construct infinitely decreasing sequences of measures of complexity for a fixed base and growing branching depth and for a fixed branching depth but varying base.
@article{DM_2006_18_4_a6,
     author = {D. Yu. Cherukhin},
     title = {On circuits of functional elements of finite depth of branching},
     journal = {Diskretnaya Matematika},
     pages = {73--83},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_4_a6/}
}
TY  - JOUR
AU  - D. Yu. Cherukhin
TI  - On circuits of functional elements of finite depth of branching
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 73
EP  - 83
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_4_a6/
LA  - ru
ID  - DM_2006_18_4_a6
ER  - 
%0 Journal Article
%A D. Yu. Cherukhin
%T On circuits of functional elements of finite depth of branching
%J Diskretnaya Matematika
%D 2006
%P 73-83
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_4_a6/
%G ru
%F DM_2006_18_4_a6
D. Yu. Cherukhin. On circuits of functional elements of finite depth of branching. Diskretnaya Matematika, Tome 18 (2006) no. 4, pp. 73-83. http://geodesic.mathdoc.fr/item/DM_2006_18_4_a6/

[1] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, Moskva, 1984

[2] Subbotovskaya B. A., “O sravnenii bazisov pri realizatsii funktsii algebry logiki formulami”, DAN SSSR, 149:4 (1963), 784–787 | MR | Zbl

[3] Subbotovskaya B. A., “O realizatsii lineinykh funktsii formulami v bazise $\lor,\land,-$”, DAN SSSR, 136:3 (1961), 784–787

[4] Muchnik B. A., “Otsenka slozhnosti realizatsii lineinoi funktsii v nekotorykh bazisakh”, Kibernetika, 1970, no. 4, 29–38 | Zbl

[5] Peryazev N. A., “Slozhnost predstavlenii bulevykh funktsii formulami v nemonolineinykh bazisakh”, Diskretnaya matematika i informatika, vyp. 2, Izd-vo Irkut. un-ta, Irkutsk, 1995 | MR

[6] Cherukhin D. Yu., “O slozhnosti realizatsii lineinoi funktsii formulami v konechnykh bulevykh bazisakh”, Diskretnaya matematika, 12:1 (2000), 135–144 | MR | Zbl

[7] Chockler H., Zwick U., “Which bases admit non-trivial shrinkage of formulae?”, Computational Complexity, 10:1 (2001), 28–40 | DOI | MR | Zbl

[8] Håstad J., “The shrinkage exponent of de Morgan formulas is 2”, SIAM J. Comput., 27 (1998), 48–64 | DOI | MR

[9] Nigmatullin R. G., Slozhnost bulevykh funktsii, Nauka, Moskva, 1991 | MR | Zbl

[10] Lupanov O. B., “O vliyanii glubiny formul na ikh slozhnost”, Kibernetika, 1970, no. 2, 46–49 | MR | Zbl

[11] Cherukhin D. Yu., “Sverkhkvadratichnye nizhnie otsenki slozhnosti formul v nekotorykh bazisakh”, Diskretnyi analiz i issledovanie operatsii. Ser. 1, 7:2 (2000), 86–95 | MR | Zbl

[12] Lozhkin S. A., “Otsenki vysokoi stepeni tochnosti dlya slozhnosti upravlyayuschikh sistem iz nekotorykh klassov”, Matem. voprosy kibernetiki, 6 (1996), 189–214 | MR