Large deviations for the number of trees of a~given size and for the maximum size of a~tree in a~random forest
Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 77-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the set of all forests consisting of $N$ rooted trees such that the roots (and the corresponding trees) are labelled by the numbers $1,\dots,N$, and the remaining $n$ vertices of the forest are labelled by the numbers $1,\dots,n$. Under the assumption that the uniform distribution is defined on this set and $n,N\to\infty$, we prove local limit theorems for the distributions of the random variables equal to the number of trees of a given size and the maximum size of a tree, which permit to estimate the corresponding local probabilities with accuracy of known order, including the probability of large deviations.
@article{DM_2006_18_3_a4,
     author = {A. N. Timashev},
     title = {Large deviations for the number of trees of a~given size and for the maximum size of a~tree in a~random forest},
     journal = {Diskretnaya Matematika},
     pages = {77--84},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_3_a4/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Large deviations for the number of trees of a~given size and for the maximum size of a~tree in a~random forest
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 77
EP  - 84
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_3_a4/
LA  - ru
ID  - DM_2006_18_3_a4
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Large deviations for the number of trees of a~given size and for the maximum size of a~tree in a~random forest
%J Diskretnaya Matematika
%D 2006
%P 77-84
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_3_a4/
%G ru
%F DM_2006_18_3_a4
A. N. Timashev. Large deviations for the number of trees of a~given size and for the maximum size of a~tree in a~random forest. Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 77-84. http://geodesic.mathdoc.fr/item/DM_2006_18_3_a4/

[1] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984

[2] Pavlov Yu. L., “Predelnye teoremy dlya chisla derevev zadannogo ob'ema v sluchainom lese”, Matem. sb., 103:3 (1977), 392–403 | MR | Zbl

[3] Pavlov Yu. L., Sluchainye lesa, Karelskii nauchn. tsentr, Petrozavodsk, 1996

[4] Pavlov Yu. L., “Random forests”, Probab. Methods in Discrete Math., VSP, Utrecht, 1997, 11–18 | MR | Zbl

[5] Pavlov Yu. L., “Asimptoticheskoe raspredelenie maksimalnogo ob'ema dereva v sluchainom lese”, Teoriya veroyatnostei i ee primeneniya, 22:3 (1977), 523–533 | MR | Zbl

[6] Makarov G. D., “Bolshie ukloneniya vysoty sluchainogo dereva”, Diskretnaya matematika 1993, 5:2, 116–125

[7] Timashev A. N., “Sluchainye razbieniya mnozhestv s izvestnym chislom blokov”, Diskretnaya matematika, 15:2 (2003), 138–148 | Zbl