Large deviations for the number of trees of a~given size and for the maximum size of a~tree in a~random forest
Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 77-84
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the set of all forests consisting of $N$ rooted trees such that the roots (and the corresponding trees) are labelled by the numbers $1,\dots,N$, and the remaining $n$ vertices of the forest are labelled by the numbers $1,\dots,n$. Under the assumption that the uniform distribution is defined on this set and $n,N\to\infty$, we prove local limit theorems for the distributions of the random variables equal to the number of trees of a given size and the maximum size of a tree, which permit to estimate the corresponding local probabilities with accuracy of known order, including the probability of large deviations.
@article{DM_2006_18_3_a4,
author = {A. N. Timashev},
title = {Large deviations for the number of trees of a~given size and for the maximum size of a~tree in a~random forest},
journal = {Diskretnaya Matematika},
pages = {77--84},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_3_a4/}
}
TY - JOUR AU - A. N. Timashev TI - Large deviations for the number of trees of a~given size and for the maximum size of a~tree in a~random forest JO - Diskretnaya Matematika PY - 2006 SP - 77 EP - 84 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2006_18_3_a4/ LA - ru ID - DM_2006_18_3_a4 ER -
A. N. Timashev. Large deviations for the number of trees of a~given size and for the maximum size of a~tree in a~random forest. Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 77-84. http://geodesic.mathdoc.fr/item/DM_2006_18_3_a4/