On the rate of convergence of the distribution of the number of cycles of given length in a~random permutation with known number of cycles to the limit distributions
Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 61-76
Voir la notice de l'article provenant de la source Math-Net.Ru
Let on the set $S_{n,N}$ of all different permutations of degree $n$ with $N$ cycles the uniform distribution be given. We obtain estimates of the rate of convergence of the distribution of the number of cycles of given length in a random permutation of $S_{n,N}$ to the limit distributions as $n,N\to\infty$ in such a way that either $n/N\to 1$ or $n/N\to\infty$.
@article{DM_2006_18_3_a3,
author = {E. V. Cherepanova},
title = {On the rate of convergence of the distribution of the number of cycles of given length in a~random permutation with known number of cycles to the limit distributions},
journal = {Diskretnaya Matematika},
pages = {61--76},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_3_a3/}
}
TY - JOUR AU - E. V. Cherepanova TI - On the rate of convergence of the distribution of the number of cycles of given length in a~random permutation with known number of cycles to the limit distributions JO - Diskretnaya Matematika PY - 2006 SP - 61 EP - 76 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2006_18_3_a3/ LA - ru ID - DM_2006_18_3_a3 ER -
%0 Journal Article %A E. V. Cherepanova %T On the rate of convergence of the distribution of the number of cycles of given length in a~random permutation with known number of cycles to the limit distributions %J Diskretnaya Matematika %D 2006 %P 61-76 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2006_18_3_a3/ %G ru %F DM_2006_18_3_a3
E. V. Cherepanova. On the rate of convergence of the distribution of the number of cycles of given length in a~random permutation with known number of cycles to the limit distributions. Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 61-76. http://geodesic.mathdoc.fr/item/DM_2006_18_3_a3/