Attainability at a finite step of limit distributions for products of random variables with values in a finite group
Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 35-42
We give necessary and sufficient conditions of equiprobability at a finite step for limit distributions of products of random variables whose values lie in a finite group and whose distributions are defined by a Markov chain such that the uniform limit distribution is concentrated on the corresponding cosets of the finite group by some its conjugate subgroups.
@article{DM_2006_18_3_a1,
author = {I. A. Kruglov},
title = {Attainability at a~finite step of limit distributions for products of random variables with values in a~finite group},
journal = {Diskretnaya Matematika},
pages = {35--42},
year = {2006},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_3_a1/}
}
TY - JOUR AU - I. A. Kruglov TI - Attainability at a finite step of limit distributions for products of random variables with values in a finite group JO - Diskretnaya Matematika PY - 2006 SP - 35 EP - 42 VL - 18 IS - 3 UR - http://geodesic.mathdoc.fr/item/DM_2006_18_3_a1/ LA - ru ID - DM_2006_18_3_a1 ER -
I. A. Kruglov. Attainability at a finite step of limit distributions for products of random variables with values in a finite group. Diskretnaya Matematika, Tome 18 (2006) no. 3, pp. 35-42. http://geodesic.mathdoc.fr/item/DM_2006_18_3_a1/
[1] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1 (1997), 85–112 | MR
[2] Bakhturin Yu. A., Osnovnye struktury sovremennoi algebry, Nauka, Moskva, 1990 | MR | Zbl
[3] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, Moskva, 1964 | MR