On the automaton determinization of sets of superworks
Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 84-97
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the concept of a determinising automaton which,
for every superword taken from a given set fed into its input,
beginning with some step, at any time $t$ yields the value
of the input word at time $t+1$, that is, predicts the input superword.
We find a criterion whether a given set of superwords is determinisable,
that is, whether for the set there exists a determinising automaton.
We give the best (in some sense) method to design a determinising automaton
for an arbitrary determinisable set of superwords.
For some determinisable sets we present optimal and asymptotically optimal
determinising automata.
@article{DM_2006_18_2_a5,
author = {A. G. Verenkin and \`E. \`E. Gasanov},
title = {On the automaton determinization of sets of superworks},
journal = {Diskretnaya Matematika},
pages = {84--97},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_2_a5/}
}
A. G. Verenkin; È. È. Gasanov. On the automaton determinization of sets of superworks. Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 84-97. http://geodesic.mathdoc.fr/item/DM_2006_18_2_a5/