A connection between Markov chains on finite simple semigroups and fundamental groups
Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 48-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(S,\circ)$ be a finite simple group, $s_i$, $i=1,\dots,n$, be fixed (not necessarily distinct) elements of $S$, and let $E_{\alpha_1},E_{\alpha_2},\dots, E_{\alpha_{k+1}}$ be a random realisation of a chain of states of a simple homogeneous irreducible Markov chain with the set of states $\{E_1,E_2,\dots,E_n\}$. We study convergence conditions and limit distributions for the sequences of random products of the form $\eta^{(k)}=s_{\alpha_1} \circ s_{\alpha_2}\circ \ldots \circ s_{\alpha_{k+1}}$. The convergence conditions are formulated in terms of some homomorphism from the fundamental group of the transition graph of the Markov chain to the structural group of the semigroup $S$.This research was supported by the program of the President of the Russian Federation for support of leading scientific schools, grant 8564.2006.10.
@article{DM_2006_18_2_a2,
     author = {I. A. Kruglov},
     title = {A connection between {Markov} chains on finite simple semigroups and fundamental groups},
     journal = {Diskretnaya Matematika},
     pages = {48--54},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_2_a2/}
}
TY  - JOUR
AU  - I. A. Kruglov
TI  - A connection between Markov chains on finite simple semigroups and fundamental groups
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 48
EP  - 54
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_2_a2/
LA  - ru
ID  - DM_2006_18_2_a2
ER  - 
%0 Journal Article
%A I. A. Kruglov
%T A connection between Markov chains on finite simple semigroups and fundamental groups
%J Diskretnaya Matematika
%D 2006
%P 48-54
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_2_a2/
%G ru
%F DM_2006_18_2_a2
I. A. Kruglov. A connection between Markov chains on finite simple semigroups and fundamental groups. Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 48-54. http://geodesic.mathdoc.fr/item/DM_2006_18_2_a2/

[1] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1 (1997), 85–112 | MR

[2] Aliev F. K., “O predelnykh raspredeleniyakh proizvedenii sluchainykh velichin na konechnoi prostoi polugruppe s raspredeleniyami, zadannymi na perekhodakh polozhitelno-regulyarnoi tsepi Markova”, Obozrenie prikladnoi i promyshlennoi matematiki, 4:3 (1997), 316–318

[3] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, Moskva, 1985 | MR

[4] Bakhturin Yu. A., Osnovnye struktury sovremennoi algebry, Nauka, Moskva, 1990 | MR | Zbl

[5] Sarymsakov T. A., Osnovy teorii protsessov Markova, GITTL, Moskva, 1954 | MR

[6] Kholl M., Teoriya grupp, IL, Moskva, 1962