A connection between Markov chains on finite simple semigroups and fundamental groups
Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 48-54
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(S,\circ)$ be a finite simple group, $s_i$, $i=1,\dots,n$,
be fixed (not necessarily distinct) elements of $S$, and let
$E_{\alpha_1},E_{\alpha_2},\dots, E_{\alpha_{k+1}}$ be a random realisation
of a chain of states of a simple homogeneous irreducible Markov chain
with the set of states $\{E_1,E_2,\dots,E_n\}$.
We study convergence conditions and limit distributions for the sequences
of random products of the form
$\eta^{(k)}=s_{\alpha_1} \circ s_{\alpha_2}\circ \ldots \circ s_{\alpha_{k+1}}$.
The convergence conditions are formulated in terms of some homomorphism
from the fundamental group of the transition graph of the Markov chain
to the structural group of the semigroup $S$.This research was supported by the program of the President of the Russian Federation
for support of leading scientific schools, grant 8564.2006.10.
@article{DM_2006_18_2_a2,
author = {I. A. Kruglov},
title = {A connection between {Markov} chains on finite simple semigroups and fundamental groups},
journal = {Diskretnaya Matematika},
pages = {48--54},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_2_a2/}
}
I. A. Kruglov. A connection between Markov chains on finite simple semigroups and fundamental groups. Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 48-54. http://geodesic.mathdoc.fr/item/DM_2006_18_2_a2/