Properties of the lattice of all multiply $\Omega$-canonical formations
Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 146-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the lattices $\Omega K_{n}$ and $K_{n}$ of all $n$-multiply $\Omega$-canonical and $n$-multiply canonical formations respectively. The main results of the paper are the proofs of $\mathfrak G$-separability of the lattice $\Omega K_n$ and coincidence of the systems of identities of the lattices $K_{n}$ and $K_{m}$ for different positive integers $n$ and $m$.
@article{DM_2006_18_2_a11,
     author = {Yu. A. Elovikova},
     title = {Properties of the lattice of all multiply $\Omega$-canonical formations},
     journal = {Diskretnaya Matematika},
     pages = {146--158},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_2_a11/}
}
TY  - JOUR
AU  - Yu. A. Elovikova
TI  - Properties of the lattice of all multiply $\Omega$-canonical formations
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 146
EP  - 158
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_2_a11/
LA  - ru
ID  - DM_2006_18_2_a11
ER  - 
%0 Journal Article
%A Yu. A. Elovikova
%T Properties of the lattice of all multiply $\Omega$-canonical formations
%J Diskretnaya Matematika
%D 2006
%P 146-158
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_2_a11/
%G ru
%F DM_2006_18_2_a11
Yu. A. Elovikova. Properties of the lattice of all multiply $\Omega$-canonical formations. Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 146-158. http://geodesic.mathdoc.fr/item/DM_2006_18_2_a11/

[1] Vedernikov V. A., Sorokina M. M., “$\Omega$-rassloennye formatsii i klassy Fittinga”, Diskretnaya matematika, 13:3 (2001), 125–144 | MR | Zbl

[2] Vedernikov V. A., “Maksimalnye sputniki $\Omega$-rassloennykh formatsii i klassov Fittinga”, Tr. MIAN, tematicheskii vyp. 2, 2001, 217–233 | MR

[3] Skiba A. N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997 | MR | Zbl

[4] Grettser G., Obschaya teoriya reshetok, Mir, Moskva, 1982 | MR

[5] Skachkova Yu. A., “Reshetki $\Omega$-rassloennykh formatsii”, Diskretnaya matematika, 14:2 (2002), 85–94 | MR | Zbl

[6] Skachkova Yu. A., “Bulevy reshetki kratno $\Omega$-rassloennykh formatsii”, Diskretnaya matematika, 14:3 (2002), 42–46 | MR

[7] Skachkova Yu. A., “Reshetki $\Omega$-rassloennykh formatsii”, Tezisy dokl. III Mezhdunarodnoi algebraicheskoi konferentsii v Ukraine, Sumskoi gospeduniv., Sumy, 2001, 251

[8] Doerk K., Hawkes T., Finite soluble groups, Gruyter, Berlin, 1992 | MR | Zbl