Algebraic lattices of multiply $\Omega$-foliated Fitting classes
Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 139-145
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we investigate the lattice of all Fitting classes, the lattice of all
$n$-multiply $\Omega$-foliated Fitting classes with direction
$\varphi$, $\psi_0\leq \varphi$,
and the lattice of all totally canonical Fitting classes. It is shown that
these lattices are algebraic with 1-generated compact elements.
@article{DM_2006_18_2_a10,
author = {O. V. Kamozina},
title = {Algebraic lattices of multiply $\Omega$-foliated {Fitting} classes},
journal = {Diskretnaya Matematika},
pages = {139--145},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_2_a10/}
}
O. V. Kamozina. Algebraic lattices of multiply $\Omega$-foliated Fitting classes. Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 139-145. http://geodesic.mathdoc.fr/item/DM_2006_18_2_a10/