Algebraic lattices of multiply $\Omega$-foliated Fitting classes
Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 139-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the lattice of all Fitting classes, the lattice of all $n$-multiply $\Omega$-foliated Fitting classes with direction $\varphi$, $\psi_0\leq \varphi$, and the lattice of all totally canonical Fitting classes. It is shown that these lattices are algebraic with 1-generated compact elements.
@article{DM_2006_18_2_a10,
     author = {O. V. Kamozina},
     title = {Algebraic lattices of multiply $\Omega$-foliated {Fitting} classes},
     journal = {Diskretnaya Matematika},
     pages = {139--145},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_2_a10/}
}
TY  - JOUR
AU  - O. V. Kamozina
TI  - Algebraic lattices of multiply $\Omega$-foliated Fitting classes
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 139
EP  - 145
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_2_a10/
LA  - ru
ID  - DM_2006_18_2_a10
ER  - 
%0 Journal Article
%A O. V. Kamozina
%T Algebraic lattices of multiply $\Omega$-foliated Fitting classes
%J Diskretnaya Matematika
%D 2006
%P 139-145
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_2_a10/
%G ru
%F DM_2006_18_2_a10
O. V. Kamozina. Algebraic lattices of multiply $\Omega$-foliated Fitting classes. Diskretnaya Matematika, Tome 18 (2006) no. 2, pp. 139-145. http://geodesic.mathdoc.fr/item/DM_2006_18_2_a10/

[1] Skiba A. N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997 | MR | Zbl

[2] Skiba A. N., “O lokalnykh formatsiyakh dliny 5”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 135–149 | MR

[3] Vorobev N. N., Skiba A. N., Distributivnost reshetki razreshimykh totalno lokalnykh klassov Fittinga, Preprint No 82, Gomelskii gos. univ., Gomel, 1999

[4] Vedernikov V. A., Sorokina M. M., “$\Omega$-rassloennye formatsii i klassy Fittinga konechnykh grupp”, Diskretnaya matematika, 13:3 (2001), 125–144 | MR | Zbl

[5] Vedernikov V. A., “Maksimalnye sputniki $\Omega$-rassloennykh formatsii i klassov Fittinga”, Tr. MIAN, tematicheskii vyp. 2, 2001, 217–233 | MR

[6] Doerk K., Hawkes T., Finite soluble groupes, Gruyter, Berlin, 1992 | MR | Zbl

[7] Sorokina M. M., “O minimalnykh sputnikakh kratno $\Omega$-rassloennykh klassov Fittinga i formatsii konechnykh grupp”, Bryanskomu gosudarstvennomu pedagogicheskomu universitetu 70 let, BGPU, Bryansk, 2000, 199–203