Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables
Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 126-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear discrete time dynamic control system with quadratic cost function perturbed by a sequence of dependent random variables is investigated from the point of view of the so-called probabilistic optimality criteria. In problems of stochastic optimisation, these criteria are related to the study of the asymptotic behaviour (in some probabilistic sense) of an integral cost functional as the horizon of planning tends to infinity. We obtain estimates of the rate of increasing of the defect of the optimal control, that is, the positive part of the difference between values of the cost functional under the optimal control and an arbitrary control, it is shown that these estimates are connected with parameters of the perturbing process. The results are applied to a model of optimal pension funding as a model of dynamic control.
@article{DM_2006_18_1_a9,
     author = {T. A. Belkina and M. S. Levochkina},
     title = {Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables},
     journal = {Diskretnaya Matematika},
     pages = {126--145},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a9/}
}
TY  - JOUR
AU  - T. A. Belkina
AU  - M. S. Levochkina
TI  - Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 126
EP  - 145
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_1_a9/
LA  - ru
ID  - DM_2006_18_1_a9
ER  - 
%0 Journal Article
%A T. A. Belkina
%A M. S. Levochkina
%T Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables
%J Diskretnaya Matematika
%D 2006
%P 126-145
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_1_a9/
%G ru
%F DM_2006_18_1_a9
T. A. Belkina; M. S. Levochkina. Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 126-145. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a9/

[1] Belkina T. A., Rotar V. I., “Ob optimalnosti po veroyatnosti i pochti navernoe dlya protsessov so svoistvom svyaznosti. I. Sluchai diskretnogo vremeni”, Teoriya veroyatnostei i ee primeneniya, 50:1 (2005), 3–26 | MR

[2] Belkina T. A., Rotar V. I., “Ob optimalnosti po veroyatnosti i pochti navernoe dlya protsessov so svoistvom svyaznosti. II. Sluchai nepreryvnogo vremeni”, Teoriya veroyatnostei i ee primeneniya, 50:2 (2005), 210–223 | MR

[3] Rotar V. I., “Nekotorye zamechaniya ob asimptoticheskoi optimalnosti”, Issledovaniya po veroyatnostnym problemam upravleniya ekonomicheskimi protsessami, TsEMI RAN, Moskva, 1986, 93–116

[4] Asriev A. V., Rotar V. I., “On asymptotic optimality in probability and almost surely in dynamic control”, Stochastics and Stochastic Rep., 33 (1990), 1–16 | MR | Zbl

[5] Di Masi G. B., Kabanov Yu. M., “On sensitive probabilistic criteria in the linear regulator problem with the infinite horizon”, Obozrenie prikladnoi i promyshlennoi matematiki, 5 (1998), 410–422 | Zbl

[6] Presman E. L., “Optimalnost pochti navernoe i po veroyatnosti dlya stokhasticheskogo lineino-kvadraticheskogo regulyatora”, Teoriya veroyatnostei i ee primeneniya, 42:3 (1997), 627–632 | MR | Zbl

[7] Belkina T. A., Kabanov Yu. M., Presman E. L., “O stokhasticheskoi optimalnosti dlya lineino-kvadraticheskogo regulyatora”, Teoriya veroyatnostei i ee primeneniya, 48:4 (2003), 661–675 | MR | Zbl

[8] Konyukhova (Belkina) T. A., Rotar V. I., “Upravleniya, asimptoticheski optimalnye po veroyatnosti i pochti navernoe v zadache o lineinom regulyatore”, Avtomatika i telemekhanika, 6 (1992), 65–78 | MR | Zbl

[9] Konyukhova (Belkina) T. A., “Asimptoticheski optimalnye po veroyatnosti upravleniya v zadache o lineinom regulyatore s peremennymi parametrami”, Avtomatika i telemekhanika, 55:2 (1994), 110–120 | MR | Zbl

[10] Belkina T. A., Levochkina M. S., “Ob asimptoticheskikh veroyatnostnykh kriteriyakh optimalnosti v zadache upravleniya pensionnym fondom”, Materialy 5-i Mezhdunarodnoi Ferganskoi konferentsii «Predelnye teoremy teorii veroyatnostei i ikh prilozheniya», Tashkentskii gosuniversitet, Tashkent, 2005, 82–86

[11] Belkina T. A., Levochkina M. S., “O stokhasticheskoi optimalnosti v zadache opredeleniya pensionnykh vznosov”, Analiz i modelirovanie ekonomicheskikh protsessov, t. 1, TsEMI RAN, Moskva, 2004, 81–94

[12] Sholomitskii A. G., “Finansirovanie nakopitelnykh pensii: aktuarnye metody i dinamicheskie modeli”, Obozrenie prikladnoi i promyshlennoi matematiki, 9:2 (2002), 544–576

[13] Kvakernaak Kh., Sivan R., Lineinye optimalnye sistemy upravleniya, Mir, Moskva, 1977

[14] Shiryaev A. N., Veroyatnost, Nauka, Moskva, 1989 | MR

[15] Benjamin S., “Driving the pension fund”, J. Institute Actuaries, 116 (1989), 717–735

[16] Cairns A., “Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time”, ASTIN Bulletin, 30:1 (2000), 19–55 | DOI | MR | Zbl

[17] Haberman S., Sung J.-H., “Dynamic approaches to pension funding”, Insurance: Mathematics and Economics, 15 (1994), 151–162 | DOI | MR | Zbl

[18] O'Brien T., “A two-parameter family of pension contribution functions and stochastic optimization”, Insurance: Mathematics and Economics, 6 (1987), 129–134 | DOI | MR