Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2006_18_1_a9, author = {T. A. Belkina and M. S. Levochkina}, title = {Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables}, journal = {Diskretnaya Matematika}, pages = {126--145}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a9/} }
TY - JOUR AU - T. A. Belkina AU - M. S. Levochkina TI - Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables JO - Diskretnaya Matematika PY - 2006 SP - 126 EP - 145 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2006_18_1_a9/ LA - ru ID - DM_2006_18_1_a9 ER -
%0 Journal Article %A T. A. Belkina %A M. S. Levochkina %T Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables %J Diskretnaya Matematika %D 2006 %P 126-145 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2006_18_1_a9/ %G ru %F DM_2006_18_1_a9
T. A. Belkina; M. S. Levochkina. Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 126-145. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a9/
[1] Belkina T. A., Rotar V. I., “Ob optimalnosti po veroyatnosti i pochti navernoe dlya protsessov so svoistvom svyaznosti. I. Sluchai diskretnogo vremeni”, Teoriya veroyatnostei i ee primeneniya, 50:1 (2005), 3–26 | MR
[2] Belkina T. A., Rotar V. I., “Ob optimalnosti po veroyatnosti i pochti navernoe dlya protsessov so svoistvom svyaznosti. II. Sluchai nepreryvnogo vremeni”, Teoriya veroyatnostei i ee primeneniya, 50:2 (2005), 210–223 | MR
[3] Rotar V. I., “Nekotorye zamechaniya ob asimptoticheskoi optimalnosti”, Issledovaniya po veroyatnostnym problemam upravleniya ekonomicheskimi protsessami, TsEMI RAN, Moskva, 1986, 93–116
[4] Asriev A. V., Rotar V. I., “On asymptotic optimality in probability and almost surely in dynamic control”, Stochastics and Stochastic Rep., 33 (1990), 1–16 | MR | Zbl
[5] Di Masi G. B., Kabanov Yu. M., “On sensitive probabilistic criteria in the linear regulator problem with the infinite horizon”, Obozrenie prikladnoi i promyshlennoi matematiki, 5 (1998), 410–422 | Zbl
[6] Presman E. L., “Optimalnost pochti navernoe i po veroyatnosti dlya stokhasticheskogo lineino-kvadraticheskogo regulyatora”, Teoriya veroyatnostei i ee primeneniya, 42:3 (1997), 627–632 | MR | Zbl
[7] Belkina T. A., Kabanov Yu. M., Presman E. L., “O stokhasticheskoi optimalnosti dlya lineino-kvadraticheskogo regulyatora”, Teoriya veroyatnostei i ee primeneniya, 48:4 (2003), 661–675 | MR | Zbl
[8] Konyukhova (Belkina) T. A., Rotar V. I., “Upravleniya, asimptoticheski optimalnye po veroyatnosti i pochti navernoe v zadache o lineinom regulyatore”, Avtomatika i telemekhanika, 6 (1992), 65–78 | MR | Zbl
[9] Konyukhova (Belkina) T. A., “Asimptoticheski optimalnye po veroyatnosti upravleniya v zadache o lineinom regulyatore s peremennymi parametrami”, Avtomatika i telemekhanika, 55:2 (1994), 110–120 | MR | Zbl
[10] Belkina T. A., Levochkina M. S., “Ob asimptoticheskikh veroyatnostnykh kriteriyakh optimalnosti v zadache upravleniya pensionnym fondom”, Materialy 5-i Mezhdunarodnoi Ferganskoi konferentsii «Predelnye teoremy teorii veroyatnostei i ikh prilozheniya», Tashkentskii gosuniversitet, Tashkent, 2005, 82–86
[11] Belkina T. A., Levochkina M. S., “O stokhasticheskoi optimalnosti v zadache opredeleniya pensionnykh vznosov”, Analiz i modelirovanie ekonomicheskikh protsessov, t. 1, TsEMI RAN, Moskva, 2004, 81–94
[12] Sholomitskii A. G., “Finansirovanie nakopitelnykh pensii: aktuarnye metody i dinamicheskie modeli”, Obozrenie prikladnoi i promyshlennoi matematiki, 9:2 (2002), 544–576
[13] Kvakernaak Kh., Sivan R., Lineinye optimalnye sistemy upravleniya, Mir, Moskva, 1977
[14] Shiryaev A. N., Veroyatnost, Nauka, Moskva, 1989 | MR
[15] Benjamin S., “Driving the pension fund”, J. Institute Actuaries, 116 (1989), 717–735
[16] Cairns A., “Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time”, ASTIN Bulletin, 30:1 (2000), 19–55 | DOI | MR | Zbl
[17] Haberman S., Sung J.-H., “Dynamic approaches to pension funding”, Insurance: Mathematics and Economics, 15 (1994), 151–162 | DOI | MR | Zbl
[18] O'Brien T., “A two-parameter family of pension contribution functions and stochastic optimization”, Insurance: Mathematics and Economics, 6 (1987), 129–134 | DOI | MR