On critical $\Omega$-fibered formations of finite groups
Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 106-115

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak H$ be a class of finite groups. An $\Omega$-foliated formation of finite groups $\mathfrak F$ with direction $\varphi$ is called a minimal $\Omega$-foliated non-$\mathfrak H$-formation $\varphi$, or a ${\mathfrak H}_{\Omega \varphi}$-critical formation if $\mathfrak F \nsubseteq \mathfrak H$, but all proper $\Omega$-foliated subformations with direction $\varphi$ in $\mathfrak F$ are contained in the class $\mathfrak H$. In this paper we give a complete description of the structure of minimal $\Omega$-foliated non-$\mathfrak H$-formations with $br$-direction $\varphi$ satisfying the condition $\varphi\leq\varphi_{3}$.
@article{DM_2006_18_1_a7,
     author = {M. M. Sorokina and M. A. Korpacheva},
     title = {On critical $\Omega$-fibered formations of finite groups},
     journal = {Diskretnaya Matematika},
     pages = {106--115},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a7/}
}
TY  - JOUR
AU  - M. M. Sorokina
AU  - M. A. Korpacheva
TI  - On critical $\Omega$-fibered formations of finite groups
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 106
EP  - 115
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_1_a7/
LA  - ru
ID  - DM_2006_18_1_a7
ER  - 
%0 Journal Article
%A M. M. Sorokina
%A M. A. Korpacheva
%T On critical $\Omega$-fibered formations of finite groups
%J Diskretnaya Matematika
%D 2006
%P 106-115
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_1_a7/
%G ru
%F DM_2006_18_1_a7
M. M. Sorokina; M. A. Korpacheva. On critical $\Omega$-fibered formations of finite groups. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 106-115. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a7/