On critical $\Omega$-fibered formations of finite groups
Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 106-115
Voir la notice de l'article provenant de la source Math-Net.Ru
Let
$\mathfrak H$ be a class of finite groups.
An $\Omega$-foliated formation of finite groups
$\mathfrak F$ with direction
$\varphi$ is called a minimal $\Omega$-foliated non-$\mathfrak H$-formation
$\varphi$, or
a ${\mathfrak H}_{\Omega \varphi}$-critical formation if
$\mathfrak F \nsubseteq \mathfrak H$, but all proper
$\Omega$-foliated subformations with direction $\varphi$ in
$\mathfrak F$ are contained in the class
$\mathfrak H$. In this paper we give a complete description of the structure
of minimal $\Omega$-foliated non-$\mathfrak H$-formations with
$br$-direction
$\varphi$ satisfying the condition
$\varphi\leq\varphi_{3}$.
@article{DM_2006_18_1_a7,
author = {M. M. Sorokina and M. A. Korpacheva},
title = {On critical $\Omega$-fibered formations of finite groups},
journal = {Diskretnaya Matematika},
pages = {106--115},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a7/}
}
M. M. Sorokina; M. A. Korpacheva. On critical $\Omega$-fibered formations of finite groups. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 106-115. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a7/