On critical $\Omega$-fibered formations of finite groups
Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 106-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak H$ be a class of finite groups. An $\Omega$-foliated formation of finite groups $\mathfrak F$ with direction $\varphi$ is called a minimal $\Omega$-foliated non-$\mathfrak H$-formation $\varphi$, or a ${\mathfrak H}_{\Omega \varphi}$-critical formation if $\mathfrak F \nsubseteq \mathfrak H$, but all proper $\Omega$-foliated subformations with direction $\varphi$ in $\mathfrak F$ are contained in the class $\mathfrak H$. In this paper we give a complete description of the structure of minimal $\Omega$-foliated non-$\mathfrak H$-formations with $br$-direction $\varphi$ satisfying the condition $\varphi\leq\varphi_{3}$.
@article{DM_2006_18_1_a7,
     author = {M. M. Sorokina and M. A. Korpacheva},
     title = {On critical $\Omega$-fibered formations of finite groups},
     journal = {Diskretnaya Matematika},
     pages = {106--115},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a7/}
}
TY  - JOUR
AU  - M. M. Sorokina
AU  - M. A. Korpacheva
TI  - On critical $\Omega$-fibered formations of finite groups
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 106
EP  - 115
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_1_a7/
LA  - ru
ID  - DM_2006_18_1_a7
ER  - 
%0 Journal Article
%A M. M. Sorokina
%A M. A. Korpacheva
%T On critical $\Omega$-fibered formations of finite groups
%J Diskretnaya Matematika
%D 2006
%P 106-115
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_1_a7/
%G ru
%F DM_2006_18_1_a7
M. M. Sorokina; M. A. Korpacheva. On critical $\Omega$-fibered formations of finite groups. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 106-115. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a7/

[1] Shemetkov L. A., “Ekrany stupenchatykh formatsii”, Trudy VI Vsesoyuznogo Simpoziuma po teorii grupp, Naukova dumka, Kiev, 1980, 37–50 | MR

[2] Skiba A. N., “O kriticheskikh formatsiyakh”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, IM AN Ukrainy, Kiev, 1993, 250–268 | MR | Zbl

[3] Selkin V. M., Skiba A. N., “O $\mathfrak H_{\Theta}\omega$-kriticheskikh formatsiyakh”, Voprosy algebry, 14, GGU, Gomel, 1999, 127–131

[4] Safonova I. N., “O minimalnykh $\omega$-lokalnykh ne $\mathfrak H$-formatsiyakh”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 1999, no. 2, 23–27 | MR

[5] Vedernikov V. A., Sorokina M. M., Kompozitsionnye i lokalnye nasledstvennye kriticheskie formatsii, Dep. VINITI 8.01.98, No25–V98

[6] Sorokina M. M., “O kompozitsionnykh i lokalnykh kriticheskikh formatsiyakh”, Izvestiya vuzov. Matematika, 2000, no. 7, 59–66 | MR | Zbl

[7] Vedernikov V. A., Koptyukh D. G., Chastichno kompozitsionnye formatsii grupp, Preprint BGPU, Bryansk, 1999

[8] Vedernikov V. A., Sorokina M. M., “$\omega$-veernye formatsii i klassy Fittinga konechnykh grupp”, Matematicheskie zametki, 71:1 (2002), 43–60 | MR | Zbl

[9] Vedernikov V. A., Sorokina M. M., “$\Omega$-rassloennye formatsii i klassy Fittinga konechnykh grupp”, Diskretnaya matematika, 13:3 (2001), 125–144 | MR | Zbl

[10] Vedernikov V. A., “Maksimalnye sputniki $\Omega$-rassloennykh formatsii i klassov Fittinga”, Tr. MIAN, tematicheskii vyp. 2, 2001, 217–233 | MR

[11] Sorokina M. M., Silenok N. V., “Kriticheskie $\Omega$-rassloennye formatsii konechnykh grupp”, Matematicheskie zametki, 72:2 (2002), 269–282 | MR | Zbl

[12] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, Moskva, 1978 | MR | Zbl

[13] Shemetkov L. A., Skiba A. N., Formatsii algebraicheskikh sistem, Nauka, Moskva, 1989 | MR

[14] Skiba A. N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997 | MR | Zbl

[15] Doerk K., Hawkes T., Finite soluble groups, de Gruyter, Berlin, 1992 | MR | Zbl

[16] Skiba A. N., Shemetkov L. A., “O minimalnom kompozitsionnom ekrane kompozitsionnoi formatsii”, Voprosy algebry, 7 (1992), 39–43 | MR | Zbl

[17] Vedernikov V. A., “O nekotorykh klassakh konechnykh grupp”, DAN BSSR, 32:10 (1988), 872–875 | MR | Zbl

[18] Neiman Kh., Mnogoobraziya grupp, Mir, Moskva, 1969 | MR