Solvable and locally closed modules and rings
Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 30-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the classes of all modules and all rings such that any system of linear equations over them is solvable if and only if it is concordant with linear relations.The research was supported by the program of the President of Russian Federation for support of leading scientific schools, grant 2358.2003.9.
@article{DM_2006_18_1_a2,
     author = {V. P. Elizarov},
     title = {Solvable and locally closed modules and rings},
     journal = {Diskretnaya Matematika},
     pages = {30--39},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a2/}
}
TY  - JOUR
AU  - V. P. Elizarov
TI  - Solvable and locally closed modules and rings
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 30
EP  - 39
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_1_a2/
LA  - ru
ID  - DM_2006_18_1_a2
ER  - 
%0 Journal Article
%A V. P. Elizarov
%T Solvable and locally closed modules and rings
%J Diskretnaya Matematika
%D 2006
%P 30-39
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_1_a2/
%G ru
%F DM_2006_18_1_a2
V. P. Elizarov. Solvable and locally closed modules and rings. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 30-39. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a2/

[1] Elizarov V. P., “Sistemy lineinykh uravnenii nad kvazifrobeniusovymi koltsami”, Fundament. i prikl. matem., 1:2 (1995), 535–539 | MR | Zbl

[2] Elizarov V. P., “Usloviya sovmestnosti sistem lineinykh uravnenii nad koltsami”, Fundament. i prikl. matem., 6:3 (2000), 777–788 | MR | Zbl

[3] Elizarov V. P., “Usloviya, neobkhodimye dlya razreshimosti sistemy lineinykh uravnenii nad koltsom”, Diskretnaya matematika, 16:2 (2004), 44–53 | MR | Zbl

[4] Kash F., Moduli i koltsa, Mir, Moskva, 1981 | MR

[5] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kvazifrobeniusovymi modulyami”, Uspekhi matem. nauk, 48:3 (1993), 197–198 | MR | Zbl

[6] Nechaev A. A., “Konechnye kvazifrobeniusovy moduli, prilozheniya k kodam i lineinym rekurrentam”, Fundament. i prikl. matem., 1:1 (1995), 229–254 | MR | Zbl

[7] Camion P., Levy L. S., Mann H. B., “Linear equations over a commutative ring”, J. Algebra, 17:3 (1971), 432–446 | DOI | MR

[8] Hall M., “A type of algebraic closure”, Ann. Math., 40 (1939), 360–369 | DOI | MR | Zbl

[9] Nechaev A. A., “Polylinear recurring sequences over modules and quasi-Frobenius modules”, Proc. First Intern. Tainan–Moscow Algebra Workshop, de Gruyter, Berlin, 1996, 283–288 | MR

[10] van der Waerden B. L., Moderne Algebra, v. 2, Springer, Berlin, 1931