Asymptotics of the survival probability of a bounded from below Markov critical branching process with continuous time and infinite variance
Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu(t)$ be the number of particles at time $t$ of a continuous-time critical branching process. It is known that the probability of non-extinction of the process at time $t$ $$ Q(t)=\boldsymbol{\mathsf P}\{\mu(t)>0\mid \mu(0)=1\}\to 0 $$ as $t\to\infty$. Hence it follows that $$ Q_{m0}=\boldsymbol{\mathsf P}\{\mu(t)>0\mid \mu(0)=m\}\sim m Q(t)\to 0 $$ for any $m=2,3,\dotsc$ Let for any integer $m>r\geq1$ $$ Q_{mr}(t)=\boldsymbol{\mathsf P}\{\inf_{0\leq u\leq t}\mu(u)>r\mid\mu(0)=m\}. $$ In this paper, we prove that $$ Q_{mr}(t)\sim (m-r)Q(t) $$ as $t\to\infty$ for any critical continuous-time Markov branching process. Earlier, this result was obtained for branching processes with finite variation of the number of particles. This research was supported by the Russian Foundation for Basic Research, grant 05.01.00035, and by the program of the President of Russian Federation for support of leading scientific schools, grant 1758.2003.1.
@article{DM_2006_18_1_a0,
     author = {B. A. Sevast'yanov},
     title = {Asymptotics of the survival probability of a bounded from below {Markov} critical branching process with continuous time and infinite variance},
     journal = {Diskretnaya Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2006_18_1_a0/}
}
TY  - JOUR
AU  - B. A. Sevast'yanov
TI  - Asymptotics of the survival probability of a bounded from below Markov critical branching process with continuous time and infinite variance
JO  - Diskretnaya Matematika
PY  - 2006
SP  - 3
EP  - 8
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2006_18_1_a0/
LA  - ru
ID  - DM_2006_18_1_a0
ER  - 
%0 Journal Article
%A B. A. Sevast'yanov
%T Asymptotics of the survival probability of a bounded from below Markov critical branching process with continuous time and infinite variance
%J Diskretnaya Matematika
%D 2006
%P 3-8
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2006_18_1_a0/
%G ru
%F DM_2006_18_1_a0
B. A. Sevast'yanov. Asymptotics of the survival probability of a bounded from below Markov critical branching process with continuous time and infinite variance. Diskretnaya Matematika, Tome 18 (2006) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/DM_2006_18_1_a0/

[1] Sevastyanov B. A., “Teoriya vetvyaschikhsya sluchainykh protsessov”, Uspekhi matematicheskikh nauk, 6:6 (1951), 47–99 | MR

[2] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, Moskva, 1971 | MR

[3] Sevastyanov B. A., “Ogranichennye snizu vetvyaschiesya protsessy”, DAN SSSR, 238:4 (1978), 811–813 | MR

[4] Zolotarev V. M., “Utochnenie ryada teorem teorii vetvyaschikhsya sluchainykh protsessov”, Teoriya veroyatnostei i ee primeneniya, 2:2 (1957), 256–265 | MR

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, Moskva, 1967