On minimal $\pi$-circuits of closing contacts for symmetric functions with threshold~2
Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 108-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the complexity of realisation of monotone symmetric functions of algebra of logic with threshold 2 by $\pi$-circuits of closing contacts. We find the precise value of this complexity and construct the corresponding minimal circuits both in the case of unit weights of all contacts and in the case where contacts of distinct variables may be of distinct weights.
@article{DM_2005_17_4_a9,
     author = {S. A. Lozhkin},
     title = {On minimal $\pi$-circuits of closing contacts for symmetric functions with threshold~2},
     journal = {Diskretnaya Matematika},
     pages = {108--110},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_4_a9/}
}
TY  - JOUR
AU  - S. A. Lozhkin
TI  - On minimal $\pi$-circuits of closing contacts for symmetric functions with threshold~2
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 108
EP  - 110
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_4_a9/
LA  - ru
ID  - DM_2005_17_4_a9
ER  - 
%0 Journal Article
%A S. A. Lozhkin
%T On minimal $\pi$-circuits of closing contacts for symmetric functions with threshold~2
%J Diskretnaya Matematika
%D 2005
%P 108-110
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_4_a9/
%G ru
%F DM_2005_17_4_a9
S. A. Lozhkin. On minimal $\pi$-circuits of closing contacts for symmetric functions with threshold~2. Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 108-110. http://geodesic.mathdoc.fr/item/DM_2005_17_4_a9/

[1] Cardot C., “Quelques résultats sur l'application de l'algèbre de Boole à la synthèse des circuits à relais”, Ann. Télécommun., 7:2 (1952), 75–84 | MR

[2] Redkin N. P., “Dokazatelstvo minimalnosti nekotorykh skhem iz funktsionalnykh elementov”, Problemy kibern., 23 (1970), 83–101 | MR

[3] Khrapchenko V. M., “O slozhnosti realizatsii lineinoi funktsii v klasse $\pi$-skhem”, Matem. zametki, 9:1 (1971), 35–40 | Zbl

[4] Krichevskii R. E., “O slozhnosti parallelno-posledovatelnykh kontaktnykh skhem, realizuyuschikh odnu posledovatelnost bulevykh funktsii”, Problemy kibern., 12 (1964), 45–55

[5] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1986 | MR

[6] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, Moskva, 1984

[7] Khansel Zh., “Minimalnoe chislo zamykayuschikh kontaktov, neobkhodimykh dlya realizatsii odnoi simmetrichnoi bulevoi funktsii ot $n$ peremennykh”, Kibern. sb., 5 (1968), 47–52 | Zbl