@article{DM_2005_17_4_a9,
author = {S. A. Lozhkin},
title = {On minimal $\pi$-circuits of closing contacts for symmetric functions with threshold~2},
journal = {Diskretnaya Matematika},
pages = {108--110},
year = {2005},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2005_17_4_a9/}
}
S. A. Lozhkin. On minimal $\pi$-circuits of closing contacts for symmetric functions with threshold 2. Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 108-110. http://geodesic.mathdoc.fr/item/DM_2005_17_4_a9/
[1] Cardot C., “Quelques résultats sur l'application de l'algèbre de Boole à la synthèse des circuits à relais”, Ann. Télécommun., 7:2 (1952), 75–84 | MR
[2] Redkin N. P., “Dokazatelstvo minimalnosti nekotorykh skhem iz funktsionalnykh elementov”, Problemy kibern., 23 (1970), 83–101 | MR
[3] Khrapchenko V. M., “O slozhnosti realizatsii lineinoi funktsii v klasse $\pi$-skhem”, Matem. zametki, 9:1 (1971), 35–40 | Zbl
[4] Krichevskii R. E., “O slozhnosti parallelno-posledovatelnykh kontaktnykh skhem, realizuyuschikh odnu posledovatelnost bulevykh funktsii”, Problemy kibern., 12 (1964), 45–55
[5] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1986 | MR
[6] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, Moskva, 1984
[7] Khansel Zh., “Minimalnoe chislo zamykayuschikh kontaktov, neobkhodimykh dlya realizatsii odnoi simmetrichnoi bulevoi funktsii ot $n$ peremennykh”, Kibern. sb., 5 (1968), 47–52 | Zbl