On the property of decomposability of functions of $k$-valued logic related to summation of $n$-dependent random variables in a finite Abelian group
Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 29-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the limit behaviour of the sequence of distributions of random variables taking values in the finite Abelian group $(\Omega,\oplus)$, $\Omega=\{0,1,\dots,k-1\}$, which admit the representation $$ \eta^{(N)}=f(\xi_1,\dots,\xi_n)\oplus f(\xi_2,\dots,\xi_{n+1}) \oplus\ldots \oplus f(\xi_N,\dots,\xi_{N+n-1}), $$ where $\xi_1,\xi_2,\dotsc$ is the initial sequence of independent identically distributed random variables which take values in $\Omega$, $f$ is a $k$-valued function of $n$ variables which takes values in $\Omega$. We show that the limit behaviour of the sequence of distributions of $\eta^{(N)}$ as $N\to\infty$ is determined by the minimal subgroup $H$ of the group $(\Omega,\oplus)$ which for all $x_1,\dots,x_n\in \Omega$ admits the expansion $$ f(x_1,\dots,x_n)\ominus f(0,\dots,0)\oplus H= g(x_1,\dots,x_{n-1})\ominus g(x_2,\dots,x_n)\oplus H $$ with some $k$-valued function $g$ of $n-1$ variables, where $\ominus$ is the subtraction operation in the group $(\Omega,\oplus)$. We give a description of the limit points of the sequence of distributions of the random variables $\eta^{(N)}$ and converging to them sequences in terms of the subgroup $H$ and the corresponding function $g$. This research was supported by the Program of the President of the Russian Federation for support of leading scientific schools, grant 2358.2003.9.
@article{DM_2005_17_4_a3,
     author = {I. A. Kruglov},
     title = {On the property of decomposability of functions of $k$-valued logic related to summation of $n$-dependent random variables in a finite {Abelian} group},
     journal = {Diskretnaya Matematika},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_4_a3/}
}
TY  - JOUR
AU  - I. A. Kruglov
TI  - On the property of decomposability of functions of $k$-valued logic related to summation of $n$-dependent random variables in a finite Abelian group
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 29
EP  - 39
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_4_a3/
LA  - ru
ID  - DM_2005_17_4_a3
ER  - 
%0 Journal Article
%A I. A. Kruglov
%T On the property of decomposability of functions of $k$-valued logic related to summation of $n$-dependent random variables in a finite Abelian group
%J Diskretnaya Matematika
%D 2005
%P 29-39
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_4_a3/
%G ru
%F DM_2005_17_4_a3
I. A. Kruglov. On the property of decomposability of functions of $k$-valued logic related to summation of $n$-dependent random variables in a finite Abelian group. Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 29-39. http://geodesic.mathdoc.fr/item/DM_2005_17_4_a3/

[1] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1, 1997, 85–112 | MR | Zbl