A~generalisation of quadratic residue codes to the case of cubic and biquadratic residues
Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 143-149
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a generalisation of quadratic residue codes to
the cases of higher power residues. Such a generalisation enhances
the information transmission rate with the use of such codes
as compared with the quadratic-residue codes, at a sacrifice in the lower bound
for the code distance, though. We consider the construction of generating polynomials
for such codes, which allows to write explicitly their generating matrix.
@article{DM_2005_17_4_a12,
author = {D. N. Semenovykh},
title = {A~generalisation of quadratic residue codes to the case of cubic and biquadratic residues},
journal = {Diskretnaya Matematika},
pages = {143--149},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2005_17_4_a12/}
}
TY - JOUR AU - D. N. Semenovykh TI - A~generalisation of quadratic residue codes to the case of cubic and biquadratic residues JO - Diskretnaya Matematika PY - 2005 SP - 143 EP - 149 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2005_17_4_a12/ LA - ru ID - DM_2005_17_4_a12 ER -
D. N. Semenovykh. A~generalisation of quadratic residue codes to the case of cubic and biquadratic residues. Diskretnaya Matematika, Tome 17 (2005) no. 4, pp. 143-149. http://geodesic.mathdoc.fr/item/DM_2005_17_4_a12/