Bounds for the probability of a dense embedding of one discrete sequence into another
Diskretnaya Matematika, Tome 17 (2005) no. 3, pp. 19-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain upper and lower bounds for the probability that a given sequence $X$ of finite length of symbols of a finite alphabet occurs inside a random equiprobable sequence $Y$ of symbols of the same alphabet as a subsequence whose terms are separated in $Y$ by at most one symbol. We give sequences $X$ at which the bounds are attained.This research was supported by the Russian Foundation for Basic Research, grants 02–01–00266 and 05.01.00035, and by the Program of the President of the Russian Federation for support of leading scientific schools, grant 1758.2003.1.
@article{DM_2005_17_3_a3,
     author = {V. G. Mikhailov and N. M. Mezhennaya},
     title = {Bounds for the probability of a dense embedding of one discrete sequence into another},
     journal = {Diskretnaya Matematika},
     pages = {19--27},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_3_a3/}
}
TY  - JOUR
AU  - V. G. Mikhailov
AU  - N. M. Mezhennaya
TI  - Bounds for the probability of a dense embedding of one discrete sequence into another
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 19
EP  - 27
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_3_a3/
LA  - ru
ID  - DM_2005_17_3_a3
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%A N. M. Mezhennaya
%T Bounds for the probability of a dense embedding of one discrete sequence into another
%J Diskretnaya Matematika
%D 2005
%P 19-27
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_3_a3/
%G ru
%F DM_2005_17_3_a3
V. G. Mikhailov; N. M. Mezhennaya. Bounds for the probability of a dense embedding of one discrete sequence into another. Diskretnaya Matematika, Tome 17 (2005) no. 3, pp. 19-27. http://geodesic.mathdoc.fr/item/DM_2005_17_3_a3/

[1] Golic J. D., “Constrained embedding probability for two binary strings”, SIAM J. Discrete Math., 9:3 (1996), 360–364 | DOI | MR | Zbl

[2] Kholl M., Kombinatorika, Mir, Moskva, 1970 | MR