Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2005_17_3_a2, author = {I. A. Kruglov}, title = {Conditions for the limit distribution equiprobability in a linear autoregression scheme with random control on a finite group}, journal = {Diskretnaya Matematika}, pages = {12--18}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2005_17_3_a2/} }
TY - JOUR AU - I. A. Kruglov TI - Conditions for the limit distribution equiprobability in a linear autoregression scheme with random control on a finite group JO - Diskretnaya Matematika PY - 2005 SP - 12 EP - 18 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2005_17_3_a2/ LA - ru ID - DM_2005_17_3_a2 ER -
%0 Journal Article %A I. A. Kruglov %T Conditions for the limit distribution equiprobability in a linear autoregression scheme with random control on a finite group %J Diskretnaya Matematika %D 2005 %P 12-18 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2005_17_3_a2/ %G ru %F DM_2005_17_3_a2
I. A. Kruglov. Conditions for the limit distribution equiprobability in a linear autoregression scheme with random control on a finite group. Diskretnaya Matematika, Tome 17 (2005) no. 3, pp. 12-18. http://geodesic.mathdoc.fr/item/DM_2005_17_3_a2/
[1] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1, 1997, 85–112 | MR
[2] Egorov B. A., Maksimov Yu. I., “Ob odnoi posledovatelnosti sluchainykh velichin, prinimayuschikh znacheniya iz kompaktnoi kommutativnoi gruppy”, Teoriya veroyatnostei i ee primeneniya, 13:4 (1968), 621–630 | MR
[3] Chung F. R. K., Diaconis P., Graham R. L., “A random walk problem arising in random number generation”, Ann. Probab., 15 (1987), 1148–1165 | DOI | MR | Zbl
[4] Diaconis P., Graham R. L., “An affine walk on the hypercube”, J. Comput. Appl. Math., 41 (1992), 215–235 | DOI | MR | Zbl
[5] Hildebrand M., “Random processes of the form $X_{n+1}=a_nX_n+b_n\pmod p$”, Ann. Probab., 21 (1993), 710–720 | DOI | MR | Zbl
[6] Romanovskii V. I., Diskretnye tsepi Markova, Gostekhizdat, Moskva, 1949
[7] Kruglov I. A., “O summirovanii sluchainykh velichin so znacheniyami v konechnoi gruppe, svyazannykh v funktsiyu ot prostoi odnorodnoi tsepi Markova”, Obozrenie prikladnoi i promyshlennoi matematiki, 10:2 (2003), 354–355 | MR