Conditions for the limit distribution equiprobability in a linear autoregression scheme with random control on a finite group
Diskretnaya Matematika, Tome 17 (2005) no. 3, pp. 12-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the sequence of random variables $$ \mu^{(N)}=\xi_N(\mu^{(N-1)})^{\zeta_N}, \qquad N=1,2,\dots, $$ where $\mu^{(0)}$ is a random variable that takes values in a finite group $G=(G, \bullet)$, $(\xi_N, \zeta_N)$, $N=1,2,\dots$, is a sequence of identically distributed random variables that take values in the Cartesian product $G\times\operatorname{Aut}G$, where $(\operatorname{Aut}G, \circ)$ is the group of automorphisms of $G$. We assume that the random variables $\mu^{(0)}$, $(\xi_N, \zeta_N)$, $N=1,2,\dots$, are independent. Given an arbitrary distribution of $\mu^{(0)}$, we find general necessary and sufficient conditions for the convergence, as $N\to\infty$, of the sequence of distributions of random variables $\mu^{(N)}$ to the equiprobable on $G$ distribution. This research was supported by the Program of the President of the Russian Federation for supporting the leading scientific schools, grant 2358.2003.9.
@article{DM_2005_17_3_a2,
     author = {I. A. Kruglov},
     title = {Conditions for the limit distribution equiprobability in a linear autoregression scheme with random control on a finite group},
     journal = {Diskretnaya Matematika},
     pages = {12--18},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_3_a2/}
}
TY  - JOUR
AU  - I. A. Kruglov
TI  - Conditions for the limit distribution equiprobability in a linear autoregression scheme with random control on a finite group
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 12
EP  - 18
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_3_a2/
LA  - ru
ID  - DM_2005_17_3_a2
ER  - 
%0 Journal Article
%A I. A. Kruglov
%T Conditions for the limit distribution equiprobability in a linear autoregression scheme with random control on a finite group
%J Diskretnaya Matematika
%D 2005
%P 12-18
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_3_a2/
%G ru
%F DM_2005_17_3_a2
I. A. Kruglov. Conditions for the limit distribution equiprobability in a linear autoregression scheme with random control on a finite group. Diskretnaya Matematika, Tome 17 (2005) no. 3, pp. 12-18. http://geodesic.mathdoc.fr/item/DM_2005_17_3_a2/

[1] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1, 1997, 85–112 | MR

[2] Egorov B. A., Maksimov Yu. I., “Ob odnoi posledovatelnosti sluchainykh velichin, prinimayuschikh znacheniya iz kompaktnoi kommutativnoi gruppy”, Teoriya veroyatnostei i ee primeneniya, 13:4 (1968), 621–630 | MR

[3] Chung F. R. K., Diaconis P., Graham R. L., “A random walk problem arising in random number generation”, Ann. Probab., 15 (1987), 1148–1165 | DOI | MR | Zbl

[4] Diaconis P., Graham R. L., “An affine walk on the hypercube”, J. Comput. Appl. Math., 41 (1992), 215–235 | DOI | MR | Zbl

[5] Hildebrand M., “Random processes of the form $X_{n+1}=a_nX_n+b_n\pmod p$”, Ann. Probab., 21 (1993), 710–720 | DOI | MR | Zbl

[6] Romanovskii V. I., Diskretnye tsepi Markova, Gostekhizdat, Moskva, 1949

[7] Kruglov I. A., “O summirovanii sluchainykh velichin so znacheniyami v konechnoi gruppe, svyazannykh v funktsiyu ot prostoi odnorodnoi tsepi Markova”, Obozrenie prikladnoi i promyshlennoi matematiki, 10:2 (2003), 354–355 | MR