$p$-matroids
Diskretnaya Matematika, Tome 17 (2005) no. 3, pp. 146-160

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate properties of $c$-matroids of the class of finitely $c$-generated semimodular lattices. This class is essentially wider than the main object of the theory of matroids, the class of geometric lattices associated with simple matroids. The $c$-matroids appear naturally in the construction of uniform codes.
@article{DM_2005_17_3_a13,
     author = {A. M. Kutyin},
     title = {$p$-matroids},
     journal = {Diskretnaya Matematika},
     pages = {146--160},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_3_a13/}
}
TY  - JOUR
AU  - A. M. Kutyin
TI  - $p$-matroids
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 146
EP  - 160
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_3_a13/
LA  - ru
ID  - DM_2005_17_3_a13
ER  - 
%0 Journal Article
%A A. M. Kutyin
%T $p$-matroids
%J Diskretnaya Matematika
%D 2005
%P 146-160
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_3_a13/
%G ru
%F DM_2005_17_3_a13
A. M. Kutyin. $p$-matroids. Diskretnaya Matematika, Tome 17 (2005) no. 3, pp. 146-160. http://geodesic.mathdoc.fr/item/DM_2005_17_3_a13/