Equational closure
Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 117-126

Voir la notice de l'article provenant de la source Math-Net.Ru

On the base of equation calculus, we define the operator of equational closure. We give examples of equationally complete systems and equationally closed classes. We find the cardinality of the set of equationally precomplete classes and give criteria of equational completeness. We present all equationally closed classes of Boolean functions.This research was supported by the Russian Foundation for Basic Research, grant 03–01–00783.
@article{DM_2005_17_2_a8,
     author = {S. S. Marchenkov},
     title = {Equational closure},
     journal = {Diskretnaya Matematika},
     pages = {117--126},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a8/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Equational closure
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 117
EP  - 126
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_2_a8/
LA  - ru
ID  - DM_2005_17_2_a8
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Equational closure
%J Diskretnaya Matematika
%D 2005
%P 117-126
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_2_a8/
%G ru
%F DM_2005_17_2_a8
S. S. Marchenkov. Equational closure. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 117-126. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a8/