An upper bound for the number of functions satisfying the strict avalanche criterion
Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 95-101
Voir la notice de l'article provenant de la source Math-Net.Ru
The strict avalanche criterion was introduced by Webster and Tavares
while studying some cryptographic functions.
We say that a binary function $f(x)$, $x \in V_n$, satisfies this criterion
if replacing any coordinate of the vector $x$ by its complement
changes the values of $f(x)$ exactly in a half of cases.
In this paper we establish an upper bound for the number of such functions for
$n$ large enough.
@article{DM_2005_17_2_a6,
author = {K. N. Pankov},
title = {An upper bound for the number of functions satisfying the strict avalanche criterion},
journal = {Diskretnaya Matematika},
pages = {95--101},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a6/}
}
K. N. Pankov. An upper bound for the number of functions satisfying the strict avalanche criterion. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 95-101. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a6/