An upper bound for the number of functions satisfying the strict avalanche criterion
Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 95-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The strict avalanche criterion was introduced by Webster and Tavares while studying some cryptographic functions. We say that a binary function $f(x)$, $x \in V_n$, satisfies this criterion if replacing any coordinate of the vector $x$ by its complement changes the values of $f(x)$ exactly in a half of cases. In this paper we establish an upper bound for the number of such functions for $n$ large enough.
@article{DM_2005_17_2_a6,
     author = {K. N. Pankov},
     title = {An upper bound for the number of functions satisfying the strict avalanche criterion},
     journal = {Diskretnaya Matematika},
     pages = {95--101},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a6/}
}
TY  - JOUR
AU  - K. N. Pankov
TI  - An upper bound for the number of functions satisfying the strict avalanche criterion
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 95
EP  - 101
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_2_a6/
LA  - ru
ID  - DM_2005_17_2_a6
ER  - 
%0 Journal Article
%A K. N. Pankov
%T An upper bound for the number of functions satisfying the strict avalanche criterion
%J Diskretnaya Matematika
%D 2005
%P 95-101
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_2_a6/
%G ru
%F DM_2005_17_2_a6
K. N. Pankov. An upper bound for the number of functions satisfying the strict avalanche criterion. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 95-101. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a6/

[1] Webster A. F., Tavares S. E., “On the design of $S$-boxes”, Lecture Notes Comput. Sci., 218, 1986, 523–534

[2] Cusick T. W., “Bounds on the number of functions satisfying the strict avalanche criterion”, Inform. Processing Lett., 57 (1996), 261–263 | DOI | MR | Zbl

[3] Cusick T. W., Stanica P., “Bounds on the number of functions satisfying the strict avalanche criterion”, Inform. Processing Lett., 60 (1996), 215–219 | DOI | MR

[4] Youssef A. M., Tavares S. E., “Comment on bounds on the number of functions satisfying the strict avalanche criterion”, Inform. Processing Lett., 60 (1996), 271–275 | DOI | MR

[5] Bliss D. K., “A lower bound on the number of functions satisfying the strict avalanche criterion”, Discrete Math., 185 (1998), 29–39 | DOI | MR

[6] O'Connor L., “An upper bound on the number of functions satisfying the strict avalanche criterion”, Inform. Processing Lett., 52 (1994), 325–327 | DOI | MR

[7] Bkhattachariya R. N., Ranga Rao R., Approksimatsiya normalnym raspredeleniem i asimptoticheskie razlozheniya, Nauka, Moskva, 1982 | MR