The Poisson approximation for the number of matches of values of a discrete function from chains
Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 56-69
Voir la notice de l'article provenant de la source Math-Net.Ru
We find conditions which are sufficient for convergence of the distribution of
the number of matches of values of a function considered on tuples of arguments taken
from a sequence of independent identically distributed random variables
to the Poisson law and estimate the convergence rate.
We derive a series of corollaries of this result. In particular, in the equiprobable
polynomial scheme we obtain Poisson limit theorems for the number of pairs of
non-overlapping tuples with identical frequencies of occurrences of symbols
and for the number of pairs of tuples with identical structure.This research was supported by the Program of President of Russian Federation
for supporting young Russian scientists, grant 2831.2003.09.
@article{DM_2005_17_2_a3,
author = {A. M. Shoitov},
title = {The {Poisson} approximation for the number of matches of values of a discrete function from chains},
journal = {Diskretnaya Matematika},
pages = {56--69},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a3/}
}
TY - JOUR AU - A. M. Shoitov TI - The Poisson approximation for the number of matches of values of a discrete function from chains JO - Diskretnaya Matematika PY - 2005 SP - 56 EP - 69 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2005_17_2_a3/ LA - ru ID - DM_2005_17_2_a3 ER -
A. M. Shoitov. The Poisson approximation for the number of matches of values of a discrete function from chains. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 56-69. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a3/