Touchard $C$-polynomials and polynomials quasi-orthogonal to them
Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 153-159

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Touchard $C$-polynomials closely related to the cycle indices of symmetric groups and introduce the so-called $M$-polynomials. We demonstrate that the $C$- and $M$-polynomials constitute a quasi-orthogonal system. For the partition polynomials under consideration, we give a series of recurrence relations.
@article{DM_2005_17_2_a13,
     author = {O. V. Kuz'min and O. V. Leonova},
     title = {Touchard $C$-polynomials and polynomials quasi-orthogonal to them},
     journal = {Diskretnaya Matematika},
     pages = {153--159},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a13/}
}
TY  - JOUR
AU  - O. V. Kuz'min
AU  - O. V. Leonova
TI  - Touchard $C$-polynomials and polynomials quasi-orthogonal to them
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 153
EP  - 159
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_2_a13/
LA  - ru
ID  - DM_2005_17_2_a13
ER  - 
%0 Journal Article
%A O. V. Kuz'min
%A O. V. Leonova
%T Touchard $C$-polynomials and polynomials quasi-orthogonal to them
%J Diskretnaya Matematika
%D 2005
%P 153-159
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_2_a13/
%G ru
%F DM_2005_17_2_a13
O. V. Kuz'min; O. V. Leonova. Touchard $C$-polynomials and polynomials quasi-orthogonal to them. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 153-159. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a13/