Touchard $C$-polynomials and polynomials quasi-orthogonal to them
Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 153-159
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Touchard $C$-polynomials closely related
to the cycle indices of symmetric groups
and introduce the so-called $M$-polynomials.
We demonstrate that the $C$- and $M$-polynomials constitute
a quasi-orthogonal system. For the partition polynomials under consideration,
we give a series of recurrence relations.
@article{DM_2005_17_2_a13,
author = {O. V. Kuz'min and O. V. Leonova},
title = {Touchard $C$-polynomials and polynomials quasi-orthogonal to them},
journal = {Diskretnaya Matematika},
pages = {153--159},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2005_17_2_a13/}
}
O. V. Kuz'min; O. V. Leonova. Touchard $C$-polynomials and polynomials quasi-orthogonal to them. Diskretnaya Matematika, Tome 17 (2005) no. 2, pp. 153-159. http://geodesic.mathdoc.fr/item/DM_2005_17_2_a13/