On multivalued transformations of finite sets of binary distributions with rational probabilities
Diskretnaya Matematika, Tome 17 (2005) no. 1, pp. 102-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study discrete transformations of independent random variables which take a finite number of values with rational probabilities (by a discrete transformation of random variables is meant a random variable whose value is a function of the values of original random variables). We find explicitly all possible probability distributions of random variables which can be obtained by discrete transformations of random variables with distributions belonging to an arbitrary finite set of binary rational distributions. This research was supported by the Russian Foundation for Basic Research, grant 02–01–00985, and by the program of the President of Russian Federation for supporting leading scientific schools, grant 00–15–96103.
@article{DM_2005_17_1_a8,
     author = {R. M. Kolpakov},
     title = {On multivalued transformations of finite sets of binary distributions with rational probabilities},
     journal = {Diskretnaya Matematika},
     pages = {102--128},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_1_a8/}
}
TY  - JOUR
AU  - R. M. Kolpakov
TI  - On multivalued transformations of finite sets of binary distributions with rational probabilities
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 102
EP  - 128
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_1_a8/
LA  - ru
ID  - DM_2005_17_1_a8
ER  - 
%0 Journal Article
%A R. M. Kolpakov
%T On multivalued transformations of finite sets of binary distributions with rational probabilities
%J Diskretnaya Matematika
%D 2005
%P 102-128
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_1_a8/
%G ru
%F DM_2005_17_1_a8
R. M. Kolpakov. On multivalued transformations of finite sets of binary distributions with rational probabilities. Diskretnaya Matematika, Tome 17 (2005) no. 1, pp. 102-128. http://geodesic.mathdoc.fr/item/DM_2005_17_1_a8/

[1] Bukharaev R. G., Osnovy teorii veroyatnostnykh avtomatov, Nauka, Moskva, 1985 | MR | Zbl

[2] Vinogradov I. M., Osnovy teorii chisel, Nauka, Moskva, 1981 | MR

[3] Kolpakov R. M., “O preobrazovaniyakh bulevykh sluchainykh velichin”, Matem. voprosy kibern., 9 (2000), 227–252 | MR

[4] Kolpakov R. M., “Zamykaniya odnoelementnykh mnozhestv binarnykh raspredelenii s ratsionalnymi veroyatnostyami dlya mnogoznachnykh preobrazovanii”, Matem. voprosy kibern., 11 (2002), 63–76 | MR

[5] Kolpakov R. M., “Zamknutye klassy konechnykh raspredelenii ratsionalnykh veroyatnostei”, Diskretnyi analiz i issledovanie operatsii, 11:3 (2004), 16–31 | MR

[6] Nurmeev N. N., “O bulevykh funktsiyakh s argumentami, prinimayuschimi sluchainye znacheniya”, Tezisy dokl. VIII Vsesoyuzn. konf. «Problemy teoreticheskoi kibernetiki», t. 2, Gorkii, 1988, 59–60

[7] Salimov F. I., “K voprosu modelirovaniya bulevykh sluchainykh velichin funktsiyami algebry logiki”, Veroyatnostnye metody i kibernetika, 15 (1979), 68–89 | MR | Zbl

[8] Salimov F. I., “Konechnaya porozhdennost nekotorykh algebr nad sluchainymi velichinami”, Voprosy kibern., 86 (1982), 122–130 | MR | Zbl

[9] Salimov F. I., “O maksimalnykh podalgebrakh algebr raspredelenii”, Izv. vuzov. Ser. matem., 1985, no. 7, 14–20 | MR | Zbl

[10] Salimov F. I., “Ob odnom semeistve algebr raspredelenii”, Izv. vuzov. Ser. matem., 1988, no. 7, 64–72 | MR

[11] Skhirtladze R. L., “O sinteze $p$-skhemy iz kontaktov so sluchainymi diskretnymi sostoyaniyami”, Soobsch. AN Gruzinskoi SSR, 26:2 (1961), 181–186 | Zbl

[12] Skhirtladze R. L., “O metode postroeniya bulevoi sluchainoi velichiny s zadannym raspredeleniem veroyatnostei”, Diskretnyi analiz, 7 (1966), 71–80 | Zbl

[13] Srinivasan A., Zuckerman D., “Computing with very weak random sources”, SIAM J. Comput., 28:4 (1999), 1433–1459 | DOI | MR | Zbl