Approximation of the moments of arbitrary integer orders of generalized factorial powers
Diskretnaya Matematika, Tome 17 (2005) no. 1, pp. 50-67
Voir la notice de l'article provenant de la source Math-Net.Ru
For non-negative integer random variables $\xi$,
we consider approximations of the moments
$\boldsymbol{\mathsf E}\xi^m$, where $m$ are integers, including negative integers.
We find estimates of the difference
$$
\boldsymbol{\mathsf E}\xi^m - \sum_{k=0}^s\genfrac{\{}{\}}{0mm}{}m{m-k}\boldsymbol{\mathsf E}\xi^{\underline {m-k}},
$$
where
$\genfrac{\{}{\}}{0mm}{}m{m-k}$ are extensions to all integers $m$
of Stirling numbers of the second kind,
the functions $ x^{\underline m}$ are the generalised factorial powers, and $s$ is a
positive integer.
@article{DM_2005_17_1_a4,
author = {A. P. Baranov and Yu. A. Baranov},
title = {Approximation of the moments of arbitrary integer orders of generalized factorial powers},
journal = {Diskretnaya Matematika},
pages = {50--67},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2005_17_1_a4/}
}
TY - JOUR AU - A. P. Baranov AU - Yu. A. Baranov TI - Approximation of the moments of arbitrary integer orders of generalized factorial powers JO - Diskretnaya Matematika PY - 2005 SP - 50 EP - 67 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2005_17_1_a4/ LA - ru ID - DM_2005_17_1_a4 ER -
A. P. Baranov; Yu. A. Baranov. Approximation of the moments of arbitrary integer orders of generalized factorial powers. Diskretnaya Matematika, Tome 17 (2005) no. 1, pp. 50-67. http://geodesic.mathdoc.fr/item/DM_2005_17_1_a4/