On a conditional invariance principle for a critical Galton--Watson branching process
Diskretnaya Matematika, Tome 17 (2005) no. 1, pp. 35-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a critical Galton–Watson branching process, we formulate an invariance principle which allows us to study the process in two time scales, absolute and relative (to the life time of the process). We establish a relation between the limiting process and the local time of the Brownian excursion. This research was supported by the Russian Foundation for Basic Research, grant 02–01–00266, and by the program of the President of Russian Federation of supporting leading scientific schools, grant 1758.2003.1.
@article{DM_2005_17_1_a3,
     author = {V. I. Afanasyev},
     title = {On a conditional invariance principle for a critical {Galton--Watson} branching process},
     journal = {Diskretnaya Matematika},
     pages = {35--49},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2005_17_1_a3/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - On a conditional invariance principle for a critical Galton--Watson branching process
JO  - Diskretnaya Matematika
PY  - 2005
SP  - 35
EP  - 49
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2005_17_1_a3/
LA  - ru
ID  - DM_2005_17_1_a3
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T On a conditional invariance principle for a critical Galton--Watson branching process
%J Diskretnaya Matematika
%D 2005
%P 35-49
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2005_17_1_a3/
%G ru
%F DM_2005_17_1_a3
V. I. Afanasyev. On a conditional invariance principle for a critical Galton--Watson branching process. Diskretnaya Matematika, Tome 17 (2005) no. 1, pp. 35-49. http://geodesic.mathdoc.fr/item/DM_2005_17_1_a3/

[1] Lamperti J., Ney P., “Conditioned branching processes and their limiting diffusions”, Teoriya veroyatnostei i ee primeneniya, 13:1 (1968), 126–137 | MR | Zbl

[2] Durrett R., “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6 (1978), 798–828 | DOI | MR | Zbl

[3] Lindvall T., “Convergence of critical Galton–Watson branching processes”, J. Appl. Probab., 9 (1972), 445–450 | DOI | MR | Zbl

[4] Lindvall T., “Limit theorems for some functionals of certain Galton–Watson branching processes”, Adv. Appl. Probab., 6 (1974), 309–321 | DOI | MR | Zbl

[5] Sevastyanov B. A., Kurs teorii veroyatnostei i matematicheskoi statistiki, Nauka, Moskva, 1982 | MR | Zbl

[6] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, Moskva, 1977 | MR

[7] Afanasev V. I., “Uslovnoe sluchainoe bluzhdanie s otritsatelnym snosom”, Teoriya veroyatnostei i ee primeneniya, 24 (1979), 191–198 | MR

[8] Drmota M., Gittenberger B., “On the profile of random trees”, Random Structures and Algorithms, 10 (1997), 421–451 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] Cohen J. W., Hooghiemstra G., “Brownian excursion, the M/M/1 queue and their occupation times”, Math. Oper. Res., 6 (1981), 608–629 | DOI | MR | Zbl

[10] Durrett R. T., Iglehart D. L., Miller D. R., “Weak convergence to Brownian meander and Brownian excursion”, Ann. Probab., 5 (1977), 117–129 | DOI | MR | Zbl

[11] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, Moskva, 1984

[12] Afanasev V. I., “O funktsionalakh ot sluchainogo bluzhdaniya do momenta pervogo dostizheniya otritsatelnoi poluosi”, Teoriya veroyatnostei i ee primeneniya, 31 (1986), 773–777 | MR