A probabilistic algorithm for finding the term rank of a nonnegative matrix
Diskretnaya Matematika, Tome 17 (2005) no. 1, pp. 147-156
Cet article a éte moissonné depuis la source Math-Net.Ru
We suggest a probabilistic algorithm for finding the term rank of a matrix with non-negative elements, find an estimate of the complexity of the algorithm, and establish an upper bound for the probability of finding a wrong value of the term rank.
@article{DM_2005_17_1_a11,
author = {D. A. Kuropatkin},
title = {A probabilistic algorithm for finding the term rank of a nonnegative matrix},
journal = {Diskretnaya Matematika},
pages = {147--156},
year = {2005},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2005_17_1_a11/}
}
D. A. Kuropatkin. A probabilistic algorithm for finding the term rank of a nonnegative matrix. Diskretnaya Matematika, Tome 17 (2005) no. 1, pp. 147-156. http://geodesic.mathdoc.fr/item/DM_2005_17_1_a11/
[1] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, Moskva, 2000 | MR | Zbl
[2] Mink Kh., Permanenty, Mir, Moskva, 1982 | MR
[3] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, Moskva
[4] Solodovnikov V. I., “Verkhnie otsenki slozhnosti resheniya sistem lineinykh uravnenii”, Zapiski nauchnykh seminarov LOMI, 118 (1982), 159–187 | MR | Zbl