On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field
Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 41-48
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the equation $(x_1+\ldots +x_n)^m=ax_1\ldots x_n$, where $a$ is a nonzero element of the finite field $\mathbf F_q$, $n\ge 2$, and $m$ is a positive integer. Explicit formulas for the number of solutions of this equation in $\mathbf F_q^n$ under the condition $d\in\{1,2,3,6\}$, where $d=\mathrm{gcd}(m-n,q-1)$, are found. Moreover, we obtain formulas for the number of solutions for arbitrary $d>2$ if there exists positive integer $l$ such that $d\mid(p^l+1)$, where $p$ is the characteristic of $\mathbf F_q$.
@article{DM_2004_16_4_a4,
author = {Yu. N. Baulina},
title = {On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field},
journal = {Diskretnaya Matematika},
pages = {41--48},
year = {2004},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2004_16_4_a4/}
}
Yu. N. Baulina. On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field. Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 41-48. http://geodesic.mathdoc.fr/item/DM_2004_16_4_a4/
[1] Carlitz L., “The number of solutions of some equations in a finite field”, Portug. Math., 13:1 (1954), 25–31 | MR | Zbl
[2] Baulina Yu. N., Formuly dlya chisla reshenii uravnenii markovskogo tipa v konechnykh polyakh, Diss. kand. fiz.-matem. nauk, MPGU, 2001
[3] Lidl R., Niderraiter G., Konechnye polya, Mir, Moskva, 1988 | Zbl
[4] Katre S. A., Rajwade A. R., “Complete solution of the cyclotomic problem in $\mathbf F_q$ for any prime modulus $l$, $q=p^\alpha$, $p\equiv1\pmod{l}$”, Acta Arithm, 45:3 (1985), 183–199 | MR | Zbl