On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field
Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 41-48
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the equation $(x_1+\ldots +x_n)^m=ax_1\ldots x_n$, where $a$ is a nonzero element of the finite field $\mathbf F_q$, $n\ge 2$, and $m$ is a positive integer. Explicit formulas for the number of solutions of
this equation in $\mathbf F_q^n$ under the condition $d\in\{1,2,3,6\}$, where $d=\mathrm{gcd}(m-n,q-1)$, are found. Moreover, we obtain formulas for the number of solutions for arbitrary $d>2$ if there exists positive integer $l$ such that $d\mid(p^l+1)$, where $p$ is the characteristic of $\mathbf F_q$.
@article{DM_2004_16_4_a4,
author = {Yu. N. Baulina},
title = {On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field},
journal = {Diskretnaya Matematika},
pages = {41--48},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2004_16_4_a4/}
}
TY - JOUR AU - Yu. N. Baulina TI - On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field JO - Diskretnaya Matematika PY - 2004 SP - 41 EP - 48 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2004_16_4_a4/ LA - ru ID - DM_2004_16_4_a4 ER -
Yu. N. Baulina. On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field. Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 41-48. http://geodesic.mathdoc.fr/item/DM_2004_16_4_a4/