Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2004_16_4_a4, author = {Yu. N. Baulina}, title = {On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field}, journal = {Diskretnaya Matematika}, pages = {41--48}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2004_16_4_a4/} }
TY - JOUR AU - Yu. N. Baulina TI - On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field JO - Diskretnaya Matematika PY - 2004 SP - 41 EP - 48 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2004_16_4_a4/ LA - ru ID - DM_2004_16_4_a4 ER -
Yu. N. Baulina. On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field. Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 41-48. http://geodesic.mathdoc.fr/item/DM_2004_16_4_a4/
[1] Carlitz L., “The number of solutions of some equations in a finite field”, Portug. Math., 13:1 (1954), 25–31 | MR | Zbl
[2] Baulina Yu. N., Formuly dlya chisla reshenii uravnenii markovskogo tipa v konechnykh polyakh, Diss. kand. fiz.-matem. nauk, MPGU, 2001
[3] Lidl R., Niderraiter G., Konechnye polya, Mir, Moskva, 1988 | Zbl
[4] Katre S. A., Rajwade A. R., “Complete solution of the cyclotomic problem in $\mathbf F_q$ for any prime modulus $l$, $q=p^\alpha$, $p\equiv1\pmod{l}$”, Acta Arithm, 45:3 (1985), 183–199 | MR | Zbl