Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$
Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 14-19
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a vector (multicriteria) problem of Boolean programming
where sub-criteria are projections of linear functions
onto $\mathbf R_+$. We give a bound for variation of coefficients
of such functions in the metric $l_1$ which preserves strict efficiency of the solution.
This research was supported by the State Program of Basic Research of
Republic Byelarus ‘Mathematical Structures’ 29.
@article{DM_2004_16_4_a1,
author = {V. A. Emelichev and K. G. Kuz'min},
title = {Stability analysis of a strictly efficient solution of a vector problem of {Boolean} programming in the metric~$l_1$},
journal = {Diskretnaya Matematika},
pages = {14--19},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/}
}
TY - JOUR AU - V. A. Emelichev AU - K. G. Kuz'min TI - Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$ JO - Diskretnaya Matematika PY - 2004 SP - 14 EP - 19 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/ LA - ru ID - DM_2004_16_4_a1 ER -
%0 Journal Article %A V. A. Emelichev %A K. G. Kuz'min %T Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$ %J Diskretnaya Matematika %D 2004 %P 14-19 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/ %G ru %F DM_2004_16_4_a1
V. A. Emelichev; K. G. Kuz'min. Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$. Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 14-19. http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/