Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$
Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 14-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a vector (multicriteria) problem of Boolean programming where sub-criteria are projections of linear functions onto $\mathbf R_+$. We give a bound for variation of coefficients of such functions in the metric $l_1$ which preserves strict efficiency of the solution. This research was supported by the State Program of Basic Research of Republic Byelarus ‘Mathematical Structures’ 29.
@article{DM_2004_16_4_a1,
     author = {V. A. Emelichev and K. G. Kuz'min},
     title = {Stability analysis of a strictly efficient solution of a vector problem of {Boolean} programming in the metric~$l_1$},
     journal = {Diskretnaya Matematika},
     pages = {14--19},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - K. G. Kuz'min
TI  - Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 14
EP  - 19
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/
LA  - ru
ID  - DM_2004_16_4_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A K. G. Kuz'min
%T Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$
%J Diskretnaya Matematika
%D 2004
%P 14-19
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/
%G ru
%F DM_2004_16_4_a1
V. A. Emelichev; K. G. Kuz'min. Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$. Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 14-19. http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/

[1] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Naukova dumka, Kiev, 1995 | Zbl

[2] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58 (1995), 169–190 | DOI | MR | Zbl

[3] Greenberg H. J., “An annotated bibliography for post-solution analysis in mixed integer programming and combinatorial optimization”, Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search, Kluwer, Boston, 1998, 97–148 | MR

[4] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskretnyi analiz i issledovanie operatsii, 8:1 (2001), 47–69 | MR | Zbl

[5] Emelichev V.Ȧ., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[6] Emelichev V. A., Pokhilko V. G., “Analiz chuvstvitelnosti reshenii vektornoi zadachi minimizatsii lineinykh form na mnozhestve podstanovok”, Diskretnaya matematika, 12:3 (1998), 37–48 | MR

[7] Emelichev V. A., Stepanishina Yu. V., “Mnogokriterialnye kombinatornye lineinye zadachi: parametrizatsiya printsipa optimalnosti i ustoichivost effektivnykh reshenii”, Diskretnaya matematika, 13:4 (2001), 43–51 | MR | Zbl

[8] Emelichev V. A., Krichko V. N., “Radius ustoichivosti effektivnogo resheniya vektornoi kvadratichnoi zadachi buleva programmirovaniya”, Zhurnal vychisl. matem. i matem. fiziki, 41:2 (2001), 346–350 | MR | Zbl

[9] Bukhtoyarov S. E., Emelichev V. A., Stepanishina Yu. V., “Voprosy ustoichivosti vektornykh diskretnykh zadach s parametricheskim printsipom optimalnosti”, Kibernetika i sistemnyi analiz, 2003, no. 4, 155–166 | MR | Zbl

[10] Emelichev V. A., Kuzmin K. G. Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 2004, no. 2, 79–92 | MR | Zbl

[11] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, Moskva, 1983 | MR

[12] Berdnikova E. A., Eremin I. I., Popov L. D., “Raspredelennye feierovskie protsessy dlya sistem lineinykh neravenstv i zadach lineinogo programmirovaniya”, Avtomatika i telemekhanika, 2004, no. 2, 16–32 | MR | Zbl

[13] Smale S., “Global analysis and economics, V. Pareto theory with constraints”, J. Math. Economics, 1974, no. 1, 213–221 | DOI | MR | Zbl

[14] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, Moskva, 1982 | MR | Zbl

[15] Gordeev E. N., “Issledovanie ustoichivosti zadachi o kratchaishem ostove v metrike $l_1$”, Zhurnal vychisl. matem. i matem. fiziki, 39:5 (1999), 770–778 | MR

[16] Gordeev E. N., “Issledovanie ustoichivosti optimizatsionnykh zadach na matroidakh v metrike $l_1$”, Kibernetika i sistemnyi analiz, 2001, no. 2, 132–144 | MR | Zbl