Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$
Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 14-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a vector (multicriteria) problem of Boolean programming where sub-criteria are projections of linear functions onto $\mathbf R_+$. We give a bound for variation of coefficients of such functions in the metric $l_1$ which preserves strict efficiency of the solution. This research was supported by the State Program of Basic Research of Republic Byelarus ‘Mathematical Structures’ 29.
@article{DM_2004_16_4_a1,
     author = {V. A. Emelichev and K. G. Kuz'min},
     title = {Stability analysis of a strictly efficient solution of a vector problem of {Boolean} programming in the metric~$l_1$},
     journal = {Diskretnaya Matematika},
     pages = {14--19},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - K. G. Kuz'min
TI  - Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 14
EP  - 19
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/
LA  - ru
ID  - DM_2004_16_4_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A K. G. Kuz'min
%T Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$
%J Diskretnaya Matematika
%D 2004
%P 14-19
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/
%G ru
%F DM_2004_16_4_a1
V. A. Emelichev; K. G. Kuz'min. Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric~$l_1$. Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 14-19. http://geodesic.mathdoc.fr/item/DM_2004_16_4_a1/