On the characteristic polynomials of periodic graphs
Diskretnaya Matematika, Tome 16 (2004) no. 3, pp. 153-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider periodic graphs of two types, chain and cyclic extension of an arbitrary graph. We give formulas which express the characteristic polynomials of such constructions in terms of the polynomials of the initial graphs, their subgraphs and the polynomials of a chain and a cycle. We present some applications of these results.
@article{DM_2004_16_3_a8,
     author = {V. A. Kolmykov},
     title = {On the characteristic polynomials of periodic graphs},
     journal = {Diskretnaya Matematika},
     pages = {153--159},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_3_a8/}
}
TY  - JOUR
AU  - V. A. Kolmykov
TI  - On the characteristic polynomials of periodic graphs
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 153
EP  - 159
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_3_a8/
LA  - ru
ID  - DM_2004_16_3_a8
ER  - 
%0 Journal Article
%A V. A. Kolmykov
%T On the characteristic polynomials of periodic graphs
%J Diskretnaya Matematika
%D 2004
%P 153-159
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_3_a8/
%G ru
%F DM_2004_16_3_a8
V. A. Kolmykov. On the characteristic polynomials of periodic graphs. Diskretnaya Matematika, Tome 16 (2004) no. 3, pp. 153-159. http://geodesic.mathdoc.fr/item/DM_2004_16_3_a8/

[1] Tsvetkovich D., Dub M., Zakhs Kh., Spektry grafov. Teoriya i primenenie, Naukova Dumka, Kiev, 1984 | MR

[2] Schwenk A. J., Computing the characteristic polynomial of a graph, Springer-Verlag, Berlin - Heidelberg - New York:, 1974, 153–172 | MR

[3] Kolmykov V. A., “O summirovanii po putyam v spektralnoi teorii grafov”, Diskretnaya matematika, 13:4 (2001), 122–125 | MR | Zbl