Limit theorems for the sizes of trees of an unlabeled graph of a random mapping
Diskretnaya Matematika, Tome 16 (2004) no. 3, pp. 63-75

Voir la notice de l'article provenant de la source Math-Net.Ru

We find limit distributions of the maximum size of a tree and of the number of trees of given size in an unlabelled random forest consisting of $N$ rooted trees and $n$ non-root vertices provided that $N,n\to\infty$ so that $0$. With the use of these results, for the unlabelled graph of a random single-valued mapping of the set $\{1,2,\ldots,n\}$ into itself we prove theorems on the limit behaviour of the maximum tree size and of the number of trees of size $r$ as $n\to\infty$ in the cases of fixed $r$ and $r/n^{1/3}\ge C_3>0$. This research was supported by grant 1758.2003.1 of the President of Russian Federation for support of the leading scientific schools.
@article{DM_2004_16_3_a2,
     author = {Yu. L. Pavlov},
     title = {Limit theorems for the sizes of trees of an unlabeled graph of a random mapping},
     journal = {Diskretnaya Matematika},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_3_a2/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
TI  - Limit theorems for the sizes of trees of an unlabeled graph of a random mapping
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 63
EP  - 75
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_3_a2/
LA  - ru
ID  - DM_2004_16_3_a2
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%T Limit theorems for the sizes of trees of an unlabeled graph of a random mapping
%J Diskretnaya Matematika
%D 2004
%P 63-75
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_3_a2/
%G ru
%F DM_2004_16_3_a2
Yu. L. Pavlov. Limit theorems for the sizes of trees of an unlabeled graph of a random mapping. Diskretnaya Matematika, Tome 16 (2004) no. 3, pp. 63-75. http://geodesic.mathdoc.fr/item/DM_2004_16_3_a2/