On the complexity of polarized polynomials of functions of many-valued logics that depend on one variable
Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 117-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider multi-valued logic functions represented by polarised polynomials. A polynomial is called polarised if each its variable can be polarised by a certain shift. We introduce the Shannon function which characterises the complexity of representations of multi-valued logic functions by polarised polynomials and obtain an exact estimate of the Shannon function for functions in one variable. This research was supported by the Russian Foundation for Basic Research, grant 00–01–00351.
@article{DM_2004_16_2_a8,
     author = {S. N. Selezneva},
     title = {On the complexity of polarized polynomials of functions of many-valued logics that depend on one variable},
     journal = {Diskretnaya Matematika},
     pages = {117--120},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_2_a8/}
}
TY  - JOUR
AU  - S. N. Selezneva
TI  - On the complexity of polarized polynomials of functions of many-valued logics that depend on one variable
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 117
EP  - 120
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_2_a8/
LA  - ru
ID  - DM_2004_16_2_a8
ER  - 
%0 Journal Article
%A S. N. Selezneva
%T On the complexity of polarized polynomials of functions of many-valued logics that depend on one variable
%J Diskretnaya Matematika
%D 2004
%P 117-120
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_2_a8/
%G ru
%F DM_2004_16_2_a8
S. N. Selezneva. On the complexity of polarized polynomials of functions of many-valued logics that depend on one variable. Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 117-120. http://geodesic.mathdoc.fr/item/DM_2004_16_2_a8/

[1] Lidl R., Niderraiter G., Konechnye polya, Mir, Moskva, 1988 | Zbl

[2] Peryazev N. A., “Slozhnost bulevykh funktsii v klasse polinomialnykh polyarizovannykh form”, Algebra i logika, 34 (1995), 323–326 | MR | Zbl

[3] Selezneva S. N., “O slozhnosti predstavleniya funktsii mnogoznachnykh logik polyarizovannymi polinomami”, Diskretnaya matematika, 14:2 (2002), 48–53 | MR | Zbl