On the complexity of polarized polynomials of functions of many-valued logics that depend on one variable
Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 117-120
We consider multi-valued logic functions represented by polarised polynomials. A polynomial is called polarised if each its variable can be polarised by a certain shift. We introduce the Shannon function which characterises the complexity of representations of multi-valued logic functions by polarised polynomials and obtain an exact estimate of the Shannon function for functions in one variable. This research was supported by the Russian Foundation for Basic Research, grant 00–01–00351.
@article{DM_2004_16_2_a8,
author = {S. N. Selezneva},
title = {On the complexity of polarized polynomials of functions of many-valued logics that depend on one variable},
journal = {Diskretnaya Matematika},
pages = {117--120},
year = {2004},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2004_16_2_a8/}
}
TY - JOUR AU - S. N. Selezneva TI - On the complexity of polarized polynomials of functions of many-valued logics that depend on one variable JO - Diskretnaya Matematika PY - 2004 SP - 117 EP - 120 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/DM_2004_16_2_a8/ LA - ru ID - DM_2004_16_2_a8 ER -
S. N. Selezneva. On the complexity of polarized polynomials of functions of many-valued logics that depend on one variable. Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 117-120. http://geodesic.mathdoc.fr/item/DM_2004_16_2_a8/
[1] Lidl R., Niderraiter G., Konechnye polya, Mir, Moskva, 1988 | Zbl
[2] Peryazev N. A., “Slozhnost bulevykh funktsii v klasse polinomialnykh polyarizovannykh form”, Algebra i logika, 34 (1995), 323–326 | MR | Zbl
[3] Selezneva S. N., “O slozhnosti predstavleniya funktsii mnogoznachnykh logik polyarizovannymi polinomami”, Diskretnaya matematika, 14:2 (2002), 48–53 | MR | Zbl