On the solution of automaton equations
Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 104-116
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of solving automata equations in one variable. We suggest an algorithm for determining whether a given equation has a solution. We introduce the notion of a boundedly non-determinate function. It is proved that if an automaton equation has a solution, then the set of all solutions of this equation is embedded into some boundedly non-determinate function which can be effectively constructed on the base of the initial equation.
@article{DM_2004_16_2_a7,
author = {I. V. Lyalin},
title = {On the solution of automaton equations},
journal = {Diskretnaya Matematika},
pages = {104--116},
year = {2004},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2004_16_2_a7/}
}
I. V. Lyalin. On the solution of automaton equations. Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 104-116. http://geodesic.mathdoc.fr/item/DM_2004_16_2_a7/
[1] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Vvedenie v teoriyu avtomatov, Nauka, Moskva, 1985 | MR
[2] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1979 | MR | Zbl
[3] Evtushenko N., Villa T., Petrenko A., Braiton R., Sandzhovanni–Vintsentelli A., Reshenie uravnenii v logicheskom sinteze, Spektr, Tomsk, 1999
[4] Trakhtenbrot B. A., Barzdin Ya. M., Konechnye avtomaty (povedenie i sintez), Izdatelstvo “Nauka”, Moskva, 1970 ; Трахтенброт Б. А., “Конечные автоматы и логика одноместных предикатов”, Сиб. матем. журнал, 3:1 (1962), 103–131 | MR