On the McEliece public-key cryptosystem based on Reed-Muller binary codes
Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 79-84
We study the McEliece cryptosystem with $u$-fold use of binary Reed–Muller codes $\mathit{RM}(r,m)$. This modification of the McEliece cryptosystem was proposed by V. M. Sidelnikov in 1994 and combines high cryptographic security, transmission rate close to one, and moderate complexity of both enciphering and deciphering. For arbitrary values of the parameters $u$, $r$, and $m$ we give an upper bound for the cardinality of the set of public keys of this cryptosystem and calculate its exact value in the case of $u=2$ and $r=1$.
@article{DM_2004_16_2_a4,
author = {G. A. Karpunin},
title = {On the {McEliece} public-key cryptosystem based on {Reed-Muller} binary codes},
journal = {Diskretnaya Matematika},
pages = {79--84},
year = {2004},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2004_16_2_a4/}
}
G. A. Karpunin. On the McEliece public-key cryptosystem based on Reed-Muller binary codes. Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 79-84. http://geodesic.mathdoc.fr/item/DM_2004_16_2_a4/
[1] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, 1978, 114–116
[2] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida–Mallera”, Diskretnaya matematika, 6:2 (1994), 3–20 | MR | Zbl
[3] Sidelnikov V. M., Pershakov A. S., “Dekodirovanie kodov Rida–Mallera pri bolshom chisle oshibok”, Probl. peredachi informatsii, 28:3 (1992), 80–94 | MR
[4] Mak-Vilyams F. Dzh., Sloen N. Dzh., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979