Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2004_16_1_a8, author = {I. G. Shaposhnikov}, title = {On some systems of generators of symmetric and alternating groups admitting a simple programmed realization}, journal = {Diskretnaya Matematika}, pages = {114--120}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a8/} }
TY - JOUR AU - I. G. Shaposhnikov TI - On some systems of generators of symmetric and alternating groups admitting a simple programmed realization JO - Diskretnaya Matematika PY - 2004 SP - 114 EP - 120 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2004_16_1_a8/ LA - ru ID - DM_2004_16_1_a8 ER -
I. G. Shaposhnikov. On some systems of generators of symmetric and alternating groups admitting a simple programmed realization. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 114-120. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a8/
[1] Glukhov M. M., “Zadanie konechnykh grupp sistemami obrazuyuschikh”, Trudy po diskretnoi matematike, 1 (1997), 43–66 | MR | Zbl
[2] Wielandt H., Finite permutation groups, Academic Press, London, 1964 | MR | Zbl
[3] Pogorelov B. A., “Primitivnye gruppy podstanovok, soderzhaschie $2^m$-tsikl”, Algebra i logika, 19:2 (1980), 236–247 | MR | Zbl
[4] Shaposhnikov I. G., “O kongruentsiyakh konechnykh mnogoosnovnykh universalnykh algebr”, Diskretnaya matematika, 11:3 (1999), 48–62 | MR | Zbl
[5] Raghavarao D., Constructions and combinatorial problems in design of experiments, Wiley, New York, 1971 | MR | Zbl
[6] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967 | MR
[7] Borisenko V. V., “Neprivodimye $n$-kvazigruppy na konechnykh mnozhestvakh sostavnogo poryadka”, Matem. issledovaniya, 51 (1979), 36–42
[8] Shaposhnikov I. G., “Metod ispolzovaniya $\delta$-spleteniya universalnykh algebr dlya postroeniya preobrazovanii s zadannymi svoistvami”, Obozrenie prikladnoi i promyshlennoi matematiki, 9:3 (2002), 669–670