On some systems of generators of symmetric and alternating groups admitting a simple programmed realization
Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 114-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give systems of generators of symmetric and alternating permutation groups whose software implementation relies upon simple arithmetical operations. For some given systems, we estimate the group depth (the generator system index).
@article{DM_2004_16_1_a8,
     author = {I. G. Shaposhnikov},
     title = {On some systems of generators of symmetric and alternating groups admitting a simple programmed realization},
     journal = {Diskretnaya Matematika},
     pages = {114--120},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a8/}
}
TY  - JOUR
AU  - I. G. Shaposhnikov
TI  - On some systems of generators of symmetric and alternating groups admitting a simple programmed realization
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 114
EP  - 120
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_1_a8/
LA  - ru
ID  - DM_2004_16_1_a8
ER  - 
%0 Journal Article
%A I. G. Shaposhnikov
%T On some systems of generators of symmetric and alternating groups admitting a simple programmed realization
%J Diskretnaya Matematika
%D 2004
%P 114-120
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_1_a8/
%G ru
%F DM_2004_16_1_a8
I. G. Shaposhnikov. On some systems of generators of symmetric and alternating groups admitting a simple programmed realization. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 114-120. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a8/

[1] Glukhov M. M., “Zadanie konechnykh grupp sistemami obrazuyuschikh”, Trudy po diskretnoi matematike, 1 (1997), 43–66 | MR | Zbl

[2] Wielandt H., Finite permutation groups, Academic Press, London, 1964 | MR | Zbl

[3] Pogorelov B. A., “Primitivnye gruppy podstanovok, soderzhaschie $2^m$-tsikl”, Algebra i logika, 19:2 (1980), 236–247 | MR | Zbl

[4] Shaposhnikov I. G., “O kongruentsiyakh konechnykh mnogoosnovnykh universalnykh algebr”, Diskretnaya matematika, 11:3 (1999), 48–62 | MR | Zbl

[5] Raghavarao D., Constructions and combinatorial problems in design of experiments, Wiley, New York, 1971 | MR | Zbl

[6] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967 | MR

[7] Borisenko V. V., “Neprivodimye $n$-kvazigruppy na konechnykh mnozhestvakh sostavnogo poryadka”, Matem. issledovaniya, 51 (1979), 36–42

[8] Shaposhnikov I. G., “Metod ispolzovaniya $\delta$-spleteniya universalnykh algebr dlya postroeniya preobrazovanii s zadannymi svoistvami”, Obozrenie prikladnoi i promyshlennoi matematiki, 9:3 (2002), 669–670