Some classes of random mappings of finite sets, and nonhomogeneous branching processes
Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 9-13
Let $X=\bigcup_{t=0}^TX_t$ be a finite set, where $X_t$, $t=1,2,\ldots,T$, are pairwise non-overlapping sets, $N_t=|X_t|$ be the cardinality of the set $X_t$, $t=0,1,\ldots,T$. Let $\mathcal F_1$ be the class of all mappings $f$ of the set $X'=X\setminus X_0$ into $X$ such that the image $y=f(x)\in X_{t-1}\cup X_t$ for any $x\in X_t$, $t=1,\ldots,T$. The cardinality of the set of all mappings of the class $\mathcal F_1$ is $\prod_{t=1}^T(N_{t-1}+N_t)^{N_t}$. With the use of non-homogeneous branching processes, we study some asymptotical properties of the uniformly distributed on $\mathcal F_1$ random mapping $f$ as $N_t\to\infty$, $t=1,2,\ldots,T$. Similar results are obtained for some other classes of random mappings $f$ of the set $X$. This research was supported by the Russian Foundation for Basic Research, grant 02.01.00266, and the grant 1758.2003.1 of the President of Russian Federation for support of leading scientific schools.
@article{DM_2004_16_1_a1,
author = {B. A. Sevast'yanov},
title = {Some classes of random mappings of finite sets, and nonhomogeneous branching processes},
journal = {Diskretnaya Matematika},
pages = {9--13},
year = {2004},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a1/}
}
B. A. Sevast'yanov. Some classes of random mappings of finite sets, and nonhomogeneous branching processes. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 9-13. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a1/
[1] B. A. Sevastyanov, “Strukturnye kharakteristiki nekotorykh neravnomernykh sluchainykh otobrazhenii sluchainykh mnozhestv”, Trudy po diskretnoi matematike, 6, 2002, 184–193
[2] V. F. Kolchin, Sluchainye otobrazheniya, Nauka, Moskva, 1984 | MR
[3] V. F. Kolchin, Sluchainye grafy, Nauka, Moskva, 2000 | MR