On primitive subgroups of full affine groups of finite semi-fields
Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 126-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we continue and complete the study of finite primitive groups whose stabiliser of a point contains an Abelian normal subgroup acting irreducibly (by conjugations) on an Abelian normal subgroup of the whole group. Each such group $H$ is isomorphic to the subgroup $Z_p^\nu \leftthreetimes\Theta \leftthreetimes\Psi$ of the full affine group $A(F_{p^\nu})\cong Z_p^\nu \leftthreetimes Z_{p^\nu-1} \leftthreetimes Z_p$ of the field $F_{p^\nu}$, where the symbol of the semi-direct product $\leftthreetimes$ unites the $\nu$-power of the cyclic group $Z_p$, the metacyclic group $\Theta$, and some group of automorphisms $\Psi$ of the field $F_{p^\nu}$. Using the Zassenhaus classification of finite semi-fields, we enumerate primitive subgroups of the full affine groups of finite semi-fields.
@article{DM_2003_15_4_a8,
     author = {K. K. Shchukin},
     title = {On primitive subgroups of full affine groups of finite semi-fields},
     journal = {Diskretnaya Matematika},
     pages = {126--132},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_4_a8/}
}
TY  - JOUR
AU  - K. K. Shchukin
TI  - On primitive subgroups of full affine groups of finite semi-fields
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 126
EP  - 132
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_4_a8/
LA  - ru
ID  - DM_2003_15_4_a8
ER  - 
%0 Journal Article
%A K. K. Shchukin
%T On primitive subgroups of full affine groups of finite semi-fields
%J Diskretnaya Matematika
%D 2003
%P 126-132
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_4_a8/
%G ru
%F DM_2003_15_4_a8
K. K. Shchukin. On primitive subgroups of full affine groups of finite semi-fields. Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 126-132. http://geodesic.mathdoc.fr/item/DM_2003_15_4_a8/

[1] Schukin K. K., “O primitivnykh razreshimykh gruppakh perestanovok s kommutativnym stabilizatorom tochki”, Sib. matem. zh., 34:5 (1993), 214–217 | MR | Zbl

[2] Schukin K. K., Izv. AN Respubliki Moldova, ser. matem., 1994, no. 2(15), 40–50

[3] Schukin K. K., “Neprivodimye abelevy gruppy avtomorfizmov abelevoi gruppy i primitivnye razreshimye gruppy perestanovok”, Izv. RAN, ser. matem., 58:2 (1994), 189–195 | MR | Zbl

[4] Schukin K. K., “Pismo v redaktsiyu”, Izv. RAN. Ser. matem., 60:6 (1996), 222 | MR | Zbl

[5] Zassenhaus H., “Über endliche Fastkörper”, Abh. Math. Semin. Hamburg Univ., 11 (1935), 187–220 | DOI | Zbl

[6] Kholl M., Teoriya grupp, IL, Moskva, 1963

[7] Wahling H., Theorie der Fastkörper, Thales Verlag, Berlin, 1987 | MR

[8] Huppert B., Endliche Gruppen, Bd. I, Springer, Berlin, 1967 | MR

[9] Birkhoff G. D., Vandiver H. S., “On the integral divisor of $a^n-b^n$”, Ann. Math., 5 (1904), 173–180 | DOI | MR

[10] Suprunenko D. A., Gruppy matrits, Nauka, Moskva, 1972 | MR