On primitive subgroups of full affine groups of finite semi-fields
Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 126-132
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we continue and complete the study of finite primitive groups whose stabiliser of a point contains an Abelian normal subgroup acting irreducibly (by conjugations) on an Abelian normal subgroup of the whole group. Each such group $H$ is isomorphic to the subgroup
$Z_p^\nu \leftthreetimes\Theta \leftthreetimes\Psi$ of the full affine group
$A(F_{p^\nu})\cong Z_p^\nu \leftthreetimes Z_{p^\nu-1} \leftthreetimes Z_p$
of the field $F_{p^\nu}$, where the symbol of the semi-direct product $\leftthreetimes$ unites the $\nu$-power of the cyclic group $Z_p$, the metacyclic group $\Theta$, and some group of automorphisms $\Psi$
of the field $F_{p^\nu}$. Using the Zassenhaus classification of finite semi-fields, we enumerate primitive subgroups of the full affine groups of finite semi-fields.
@article{DM_2003_15_4_a8,
author = {K. K. Shchukin},
title = {On primitive subgroups of full affine groups of finite semi-fields},
journal = {Diskretnaya Matematika},
pages = {126--132},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2003_15_4_a8/}
}
K. K. Shchukin. On primitive subgroups of full affine groups of finite semi-fields. Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 126-132. http://geodesic.mathdoc.fr/item/DM_2003_15_4_a8/