On complexity of realisation of linear Boolean functions by circuits of functional elements over the basis
Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 100-112
We show that the minimal circuit of functional elements over the basis $\{x\to y,\bar x\}$ which realises a linear function of $n$ variables consists of $4n-4$ elements.
@article{DM_2003_15_4_a5,
author = {I. C. Shkrebela},
title = {On complexity of realisation of linear {Boolean} functions by circuits of functional elements over the basis},
journal = {Diskretnaya Matematika},
pages = {100--112},
year = {2003},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2003_15_4_a5/}
}
TY - JOUR AU - I. C. Shkrebela TI - On complexity of realisation of linear Boolean functions by circuits of functional elements over the basis JO - Diskretnaya Matematika PY - 2003 SP - 100 EP - 112 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/DM_2003_15_4_a5/ LA - ru ID - DM_2003_15_4_a5 ER -
I. C. Shkrebela. On complexity of realisation of linear Boolean functions by circuits of functional elements over the basis. Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 100-112. http://geodesic.mathdoc.fr/item/DM_2003_15_4_a5/
[1] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyaemykh sistem, MGU, Moskva, 1984
[2] Redkin N. P., “Dokazatelstvo minimalnosti nekotorykh skhem iz funktsionalnykh elementov”, Problemy kibernetiki, 1 23 (1970), 83–101 | MR
[3] Redkin N. P., “O minimalnoi realizatsii lineinoi funktsii skhemy iz funktsionalnykh elementov”, Kibernetika, 6 (1971), 31–38 | MR