Limit distributions of the number of cycles of given length in a random permutation with a known number of cycles
Diskretnaya Matematika, Tome 15 (2003) no. 3, pp. 128-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete description of the limit behaviour of the number of cycles of length $r$ in a random permutation of degree $n$ with $N$ cycles in all domains of variations of the parameters $n$, $N$, $r$, thus essentially extending the known results concerning the limit behaviour of the number of such cycles. This research was supported by the grant 1758.2003.1 of support of leading scientific schools of Russian Federation.
@article{DM_2003_15_3_a8,
     author = {E. V. Cherepanova},
     title = {Limit distributions of the number of cycles of given length in a random permutation with a known number of cycles},
     journal = {Diskretnaya Matematika},
     pages = {128--144},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_3_a8/}
}
TY  - JOUR
AU  - E. V. Cherepanova
TI  - Limit distributions of the number of cycles of given length in a random permutation with a known number of cycles
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 128
EP  - 144
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_3_a8/
LA  - ru
ID  - DM_2003_15_3_a8
ER  - 
%0 Journal Article
%A E. V. Cherepanova
%T Limit distributions of the number of cycles of given length in a random permutation with a known number of cycles
%J Diskretnaya Matematika
%D 2003
%P 128-144
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_3_a8/
%G ru
%F DM_2003_15_3_a8
E. V. Cherepanova. Limit distributions of the number of cycles of given length in a random permutation with a known number of cycles. Diskretnaya Matematika, Tome 15 (2003) no. 3, pp. 128-144. http://geodesic.mathdoc.fr/item/DM_2003_15_3_a8/

[1] Timashev A. N.,, “O raspredelenii chisla tsiklov zadannoi dliny v klasse podstanovok s izvestnym chislom tsiklov”, Diskretnaya matematika, 13:4 (2001), 60–72 | MR | Zbl

[2] Kolchin V. F., Sevastyanov B. A, Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976 | MR | Zbl

[3] Kolchin V. F., Sluchainye grafy, Nauka, Moskva, 2000 | MR

[4] Pavlov Yu. L., Loseva E. A., “Predelnye raspredeleniya maksimalnogo obema dereva v sluchainom rekursivnom lese”, Diskretnaya matematika, 14:1 (2002), 60–74 | MR | Zbl

[5] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, Moskva, 1977