On the distinguishability of states of automata
Diskretnaya Matematika, Tome 15 (2003) no. 3, pp. 76-90
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate variants of the notion of distinguishability of automata. The distinguishability in the sense of a given metric on the set of output symbols, the $k$-distinguishability and the $\infty$-distinguishability are
considered. For each variant the exact value of the corresponding Shannon function is obtained.
We find the minimum value of the parameter $k$ for which the $k$-distinguishability implies the $\infty$-distinguishability.
The research was supported by the Russian Foundation for Basic Research, grant 02–01–00162.
@article{DM_2003_15_3_a4,
author = {P. A. Panteleev},
title = {On the distinguishability of states of automata},
journal = {Diskretnaya Matematika},
pages = {76--90},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2003_15_3_a4/}
}
P. A. Panteleev. On the distinguishability of states of automata. Diskretnaya Matematika, Tome 15 (2003) no. 3, pp. 76-90. http://geodesic.mathdoc.fr/item/DM_2003_15_3_a4/