An order-optimal method for the synthesis of a search operator in a class of automaton circuits of a special form
Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 131-156
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a problem of constructing
operators of metric closeness in the $n$-dimensional cube in the class of automaton
circuits of a special form. We study two characteristics of complexity,
the spacial and temporal characteristics (the number of elements of the circuit and
the time required for calculations realised by the circuit).
We suggest a method of constructing the circuits realising such operators with
constant running time and optimal in order number of elements.This research was supported by the Russian Foundation for Basic Research,
grant 01–01–00748.
@article{DM_2003_15_1_a6,
author = {E. S. Bychenkova},
title = {An order-optimal method for the synthesis of a search operator in a class of automaton circuits of a special form},
journal = {Diskretnaya Matematika},
pages = {131--156},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2003_15_1_a6/}
}
TY - JOUR AU - E. S. Bychenkova TI - An order-optimal method for the synthesis of a search operator in a class of automaton circuits of a special form JO - Diskretnaya Matematika PY - 2003 SP - 131 EP - 156 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2003_15_1_a6/ LA - ru ID - DM_2003_15_1_a6 ER -
E. S. Bychenkova. An order-optimal method for the synthesis of a search operator in a class of automaton circuits of a special form. Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 131-156. http://geodesic.mathdoc.fr/item/DM_2003_15_1_a6/