On good pairs in edge-regular graphs
Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 77-97
Cet article a éte moissonné depuis la source Math-Net.Ru
An undirected graph on $v$ vertices of valences equal to $k$, whose each edge belongs to exactly $\lambda$ triangles is called edge-regular with parameters $(v,k,\lambda)$. Let $b_1=k-\lambda-1$. We say that a pair of vertices $u$, $w$ is good if these vertices have exactly $k-2b_1+1$ common neighbours. We prove that if $k\ge3b_1-1$, then either for any vertex $u$ at most two vertices in $\Gamma$ form good pairs with $u$, or $k=3b_1-1$, $\Gamma$ is a polygon or the icosahedron graph, and any two vertices which are 2 distant from each other form good pairs. We give a new upper bound for the number of vertices in an edge-regular graph of diameter two with $k\ge3b_1-1$. We prove that an edge-regular graph with parameters of the triangular graph $T(n)$, $n=5,6$, the Clebsch graph, or the Schläfli graph coincides with the corresponding graph. This research was supported by the Russian Foundation for Basic Research, grant 02–01–00772.
@article{DM_2003_15_1_a3,
author = {A. A. Makhnev and A. A. Vedenev and A. N. Kuznetsov and V. V. Nosov},
title = {On good pairs in edge-regular graphs},
journal = {Diskretnaya Matematika},
pages = {77--97},
year = {2003},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2003_15_1_a3/}
}
A. A. Makhnev; A. A. Vedenev; A. N. Kuznetsov; V. V. Nosov. On good pairs in edge-regular graphs. Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 77-97. http://geodesic.mathdoc.fr/item/DM_2003_15_1_a3/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer, Berlin, 1989 | MR
[2] Makhnev A. A., Minakova I. M., “Ob odnom klasse reberno regulyarnykh grafov”, Voprosy algebry, Izv. Gomelskogo gosuniv., 3, 2000, 145–154
[3] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskretnyi analiz i issledovanie operatsii, 3 (1996), 71–83 | MR | Zbl