On good pairs in edge-regular graphs
Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 77-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

An undirected graph on $v$ vertices of valences equal to $k$, whose each edge belongs to exactly $\lambda$ triangles is called edge-regular with parameters $(v,k,\lambda)$. Let $b_1=k-\lambda-1$. We say that a pair of vertices $u$, $w$ is good if these vertices have exactly $k-2b_1+1$ common neighbours. We prove that if $k\ge3b_1-1$, then either for any vertex $u$ at most two vertices in $\Gamma$ form good pairs with $u$, or $k=3b_1-1$, $\Gamma$ is a polygon or the icosahedron graph, and any two vertices which are 2 distant from each other form good pairs. We give a new upper bound for the number of vertices in an edge-regular graph of diameter two with $k\ge3b_1-1$. We prove that an edge-regular graph with parameters of the triangular graph $T(n)$, $n=5,6$, the Clebsch graph, or the Schläfli graph coincides with the corresponding graph. This research was supported by the Russian Foundation for Basic Research, grant 02–01–00772.
@article{DM_2003_15_1_a3,
     author = {A. A. Makhnev and A. A. Vedenev and A. N. Kuznetsov and V. V. Nosov},
     title = {On good pairs in edge-regular graphs},
     journal = {Diskretnaya Matematika},
     pages = {77--97},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_1_a3/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - A. A. Vedenev
AU  - A. N. Kuznetsov
AU  - V. V. Nosov
TI  - On good pairs in edge-regular graphs
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 77
EP  - 97
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_1_a3/
LA  - ru
ID  - DM_2003_15_1_a3
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A A. A. Vedenev
%A A. N. Kuznetsov
%A V. V. Nosov
%T On good pairs in edge-regular graphs
%J Diskretnaya Matematika
%D 2003
%P 77-97
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_1_a3/
%G ru
%F DM_2003_15_1_a3
A. A. Makhnev; A. A. Vedenev; A. N. Kuznetsov; V. V. Nosov. On good pairs in edge-regular graphs. Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 77-97. http://geodesic.mathdoc.fr/item/DM_2003_15_1_a3/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer, Berlin, 1989 | MR

[2] Makhnev A. A., Minakova I. M., “Ob odnom klasse reberno regulyarnykh grafov”, Voprosy algebry, Izv. Gomelskogo gosuniv., 3, 2000, 145–154

[3] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskretnyi analiz i issledovanie operatsii, 3 (1996), 71–83 | MR | Zbl