On the asymptotic complexity of computing discrete logarithms in the field $\operatorname{\mathit{GF}}(p)$
Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 28-49

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyse the modification of an algorithm for finding discrete logarithms over the field $\mathit{GF}(p)$ ($p$ is a prime number) which has been described by the author previously. It is shown that this modification gives the best estimate at the present time of the complexity of finding discrete logarithms over finite prime fields which coincides with the best known estimate of the complexity of factoring integers obtained by D. Coppersmith.
@article{DM_2003_15_1_a1,
     author = {D. V. Matyukhin},
     title = {On the asymptotic complexity of computing discrete logarithms in the field $\operatorname{\mathit{GF}}(p)$},
     journal = {Diskretnaya Matematika},
     pages = {28--49},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_1_a1/}
}
TY  - JOUR
AU  - D. V. Matyukhin
TI  - On the asymptotic complexity of computing discrete logarithms in the field $\operatorname{\mathit{GF}}(p)$
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 28
EP  - 49
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_1_a1/
LA  - ru
ID  - DM_2003_15_1_a1
ER  - 
%0 Journal Article
%A D. V. Matyukhin
%T On the asymptotic complexity of computing discrete logarithms in the field $\operatorname{\mathit{GF}}(p)$
%J Diskretnaya Matematika
%D 2003
%P 28-49
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_1_a1/
%G ru
%F DM_2003_15_1_a1
D. V. Matyukhin. On the asymptotic complexity of computing discrete logarithms in the field $\operatorname{\mathit{GF}}(p)$. Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 28-49. http://geodesic.mathdoc.fr/item/DM_2003_15_1_a1/