Limit theorems for probabilities of large deviations of a Galton-Watson process
Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 3-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove local and integral limit theorems for large deviations of Cramer type for a critical Galton–Watson branching process under the assumption that the radius of convergence of the generating function of the progeny is strictly greater than one. The proof is based on a modified Cramer approach which consists of construction of an auxiliary non-homogeneous in time branching process.This research was supported by the Russian Foundation for Basic Research, grant 02–01–01252, and by INTAS, grants 99–01317, 00–265.
@article{DM_2003_15_1_a0,
     author = {S. V. Nagaev and V. I. Vakhtel'},
     title = {Limit theorems for probabilities of large deviations of a {Galton-Watson} process},
     journal = {Diskretnaya Matematika},
     pages = {3--27},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_1_a0/}
}
TY  - JOUR
AU  - S. V. Nagaev
AU  - V. I. Vakhtel'
TI  - Limit theorems for probabilities of large deviations of a Galton-Watson process
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 3
EP  - 27
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_1_a0/
LA  - ru
ID  - DM_2003_15_1_a0
ER  - 
%0 Journal Article
%A S. V. Nagaev
%A V. I. Vakhtel'
%T Limit theorems for probabilities of large deviations of a Galton-Watson process
%J Diskretnaya Matematika
%D 2003
%P 3-27
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_1_a0/
%G ru
%F DM_2003_15_1_a0
S. V. Nagaev; V. I. Vakhtel'. Limit theorems for probabilities of large deviations of a Galton-Watson process. Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 3-27. http://geodesic.mathdoc.fr/item/DM_2003_15_1_a0/

[1] Kharris T., Teoriya vetvyaschikhsya protsessov, Mir, Moskva, 1966

[2] Nagaev S. V., Mukhamedkhanova R., “Nekotorye predelnye teoremy iz teorii vetvyaschikhsya protsessov”, Predelnye teoremy i statisticheskie vyvody, Fan, Tashkent, 1966, 90–112 | MR

[3] Nagaev S. V., Vakhrushev N. V., “Otsenka veroyatnosti bolshikh uklonenii dlya kriticheskogo protsessa Galtona–Vatsona”, Teoriya veroyatnostei i ee primeneniya, 20:1 (1975), 181–182 | Zbl

[4] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, Moskva, 1972 | MR

[5] Makarov G. D., “Bolshie ukloneniya dlya protsessa Galtona–Vatsona”, Teoriya veroyatnostei i ee primeneniya, 25:3 (1980), 490–501 | MR | Zbl

[6] Borovkov K. A., “Analiz perekhodnykh yavlenii dlya vetvyaschikhsya protsessov”, Teoriya veroyatnostei i ee primeneniya, 39:3 (1994), 449–468 | MR | Zbl

[7] Kesten H., Ney P., Spitzer F., “The Galton–Watson process with mean one and finite variance”, Teoriya veroyatnostei i ee primeneniya, 11:4 (1966), 579–611 | MR | Zbl

[8] Lyumis L., Vvedenie v abstraktnyi garmonicheskii analiz, IL, Moskva, 1956

[9] Rogozin B. A., “Asimptotika koeffitsientov v teoremakh Levi–Vinera ob absolyutno skhodyaschikhsya trigonometricheskikh ryadakh”, Sibirskii matem. zh., 14:6 (1973), 1304–1312 | MR | Zbl

[10] Gelfond A. O., “Otsenka ostatochnogo chlena v predelnoi teoreme dlya rekurrentnykh sobytii”, Teoriya veroyatnostei i ee primeneniya, 9:2 (1964), 327–331 | MR

[11] Rogozin B. A., “Otsenka ostatochnogo chlena v predelnykh teoremakh teorii vosstanovleniya”, Teoriya veroyatnostei i ee primeneniya, 18:4 (1973), 703–717 | MR | Zbl