On the number of solutions of systems of linear Boolean equations in a set of vectors with a given number of ones
Diskretnaya Matematika, Tome 14 (2002) no. 4, pp. 87-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the distribution of the number of solutions of systems of random Boolean equations in the set of vectors with a given number of ones (or of a given weight). Both for systems with independent left-hand and right-hand sides and for a fortiori consistent systems, we give sufficient conditions for the distributions to converge to the Poisson law and to the standard normal law.
@article{DM_2002_14_4_a2,
     author = {V. A. Kopyttsev},
     title = {On the number of solutions of systems of linear {Boolean} equations in a set of vectors with a given number of ones},
     journal = {Diskretnaya Matematika},
     pages = {87--109},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_4_a2/}
}
TY  - JOUR
AU  - V. A. Kopyttsev
TI  - On the number of solutions of systems of linear Boolean equations in a set of vectors with a given number of ones
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 87
EP  - 109
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_4_a2/
LA  - ru
ID  - DM_2002_14_4_a2
ER  - 
%0 Journal Article
%A V. A. Kopyttsev
%T On the number of solutions of systems of linear Boolean equations in a set of vectors with a given number of ones
%J Diskretnaya Matematika
%D 2002
%P 87-109
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_4_a2/
%G ru
%F DM_2002_14_4_a2
V. A. Kopyttsev. On the number of solutions of systems of linear Boolean equations in a set of vectors with a given number of ones. Diskretnaya Matematika, Tome 14 (2002) no. 4, pp. 87-109. http://geodesic.mathdoc.fr/item/DM_2002_14_4_a2/

[1] Balakin G. V., “Vvedenie v teoriyu sluchainykh sistem uravnenii”, Trudy po diskretnoi matematike, 1, 1997, 1–18 | MR | Zbl

[2] Sevastyanov B. A., “Predelnyi zakon Puassona v skheme summ zavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 17:4 (1972), 733–738

[3] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva

[4] Mikhailov V. G., “Yavnye otsenki v predelnykh teoremakh dlya summ sluchainykh indikatorov”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:1 (1994), 580–617

[5] Borovkov A. A., Teoriya veroyatnostei, Nauka, Moskva, 1978 | MR

[6] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, Moskva, 1978 | MR | Zbl

[7] Ambrosimov A. S., “Normalnyi zakon v skheme summ zavisimykh sluchainykh velichin, rassmotrennykh B. A. Sevastyanovym”, Teoriya veroyatnostei i ee primeneniya, 21:1 (1976), 184–189 | MR | Zbl