On the number of solutions of systems of linear Boolean equations in a set of vectors with a given number of ones
Diskretnaya Matematika, Tome 14 (2002) no. 4, pp. 87-109
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the distribution of the number of solutions of systems of random Boolean equations in the set of vectors with a given number of ones (or of a given weight). Both for systems with independent left-hand and right-hand sides and for a fortiori consistent systems, we give sufficient conditions for the distributions to converge to the Poisson law and to the standard normal law.
@article{DM_2002_14_4_a2,
author = {V. A. Kopyttsev},
title = {On the number of solutions of systems of linear {Boolean} equations in a set of vectors with a given number of ones},
journal = {Diskretnaya Matematika},
pages = {87--109},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_4_a2/}
}
TY - JOUR AU - V. A. Kopyttsev TI - On the number of solutions of systems of linear Boolean equations in a set of vectors with a given number of ones JO - Diskretnaya Matematika PY - 2002 SP - 87 EP - 109 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2002_14_4_a2/ LA - ru ID - DM_2002_14_4_a2 ER -
V. A. Kopyttsev. On the number of solutions of systems of linear Boolean equations in a set of vectors with a given number of ones. Diskretnaya Matematika, Tome 14 (2002) no. 4, pp. 87-109. http://geodesic.mathdoc.fr/item/DM_2002_14_4_a2/