Automaton mappings of words that propagate distortions in Hamming and Levenshte\u\i n metrics no more than $K$ times
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 78-94
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $I$ and $O$ be finite alphabets. For a finite alphabet $\Omega$, let $\Omega^*$ denote the set of all words of finite lengths over the alphabet $\Omega$. In this paper we give a complete description of all automaton mappings of the set $I^*$ into $O^*$ which multiply symbol replacement errors in words by a factor not exceeding $K$. We give a complete description of injective automaton mappings of the set $I^*$ into $O^*$ which multiply symbol skip errors by a factor no greater than $K$. A similar result is obtained for the deletion and insertion metric.
@article{DM_2002_14_3_a8,
author = {A. V. Babash},
title = {Automaton mappings of words that propagate distortions in {Hamming} and {Levenshte\u\i} n metrics no more than $K$ times},
journal = {Diskretnaya Matematika},
pages = {78--94},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a8/}
}
TY - JOUR AU - A. V. Babash TI - Automaton mappings of words that propagate distortions in Hamming and Levenshte\u\i n metrics no more than $K$ times JO - Diskretnaya Matematika PY - 2002 SP - 78 EP - 94 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2002_14_3_a8/ LA - ru ID - DM_2002_14_3_a8 ER -
A. V. Babash. Automaton mappings of words that propagate distortions in Hamming and Levenshte\u\i n metrics no more than $K$ times. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 78-94. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a8/