Boolean lattices of $n$-multiply $\Omega$-bicanonical Fitting classes
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 47-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the $n$-multiply $\Omega$-bicanonical Fitting classes with Boolean lattice of Fitting subclasses. In particular, it is shown that in this case a Fitting class is directly decomposable with the use of the set of all atoms of its lattice. Here the notion of a direct decomposition plays the key role. Therefore we study direct decompositions separately and consider $\Omega$-foliated Fitting classes with more general directions.
@article{DM_2002_14_3_a5,
author = {O. V. Kamozina},
title = {Boolean lattices of $n$-multiply $\Omega$-bicanonical {Fitting} classes},
journal = {Diskretnaya Matematika},
pages = {47--53},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a5/}
}
O. V. Kamozina. Boolean lattices of $n$-multiply $\Omega$-bicanonical Fitting classes. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 47-53. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a5/