Boolean lattices of multiply $\Omega$-foliated formations
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 42-46
In the context of a new functional approach to the study of classes of groups, V. A. Vedernikov and M. M. Sorokina introduced $\Omega$-foliated formations, which gave a possibility to systematise a wide class of formations of finite groups. In this paper, we study $n$-multiply $\Omega$-foliated formations with $r$-direction $\varphi$ such that $\varphi_0\leq\varphi$, $\varphi (A)\subseteq\mathfrak G_{A'}\mathfrak G_{A}$ for all $A\in\mathfrak I$ whose lattice of all $n$-multiply $\Omega$-foliated subformations with direction $\varphi$ is Boolean.
@article{DM_2002_14_3_a4,
author = {Yu. A. Skachkova},
title = {Boolean lattices of multiply $\Omega$-foliated formations},
journal = {Diskretnaya Matematika},
pages = {42--46},
year = {2002},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a4/}
}
Yu. A. Skachkova. Boolean lattices of multiply $\Omega$-foliated formations. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 42-46. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a4/
[1] Vedernikov V. A., Sorokina M. M., “$\Omega$-rassloennye formatsii i klassy Fittinga”, Diskretnaya matematika, 13:3 (2001), 125–144 | MR | Zbl
[2] Bedernikov V. A., “Maksimalnye sputniki $\Omega$-rassloennykh formatsii i klassov Fittinga”, Trudy IMM UrO RAN, 7, no. 2, 2001, 55–71 | MR | Zbl
[3] Skiba A. N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997 | MR | Zbl
[4] Skachkova Yu. A., “Reshetki $\Omega$-rassloennykh formatsii”, Diskretnaya matematika, 14:2 (2002), 85–94 | MR | Zbl
[5] Grettser G., Obschaya teoriya reshetok, Mir, Moskva, 1982 | MR
[6] Vedernikov V. A., Elementy teorii klassov grupp, SPGI, Smolensk, 1988