Boolean lattices of multiply $\Omega$-foliated formations
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 42-46
Voir la notice de l'article provenant de la source Math-Net.Ru
In the context of a new functional approach to the study of classes of groups, V. A. Vedernikov and M. M. Sorokina introduced $\Omega$-foliated formations, which gave a possibility to systematise a wide class of formations of finite groups. In this paper, we study $n$-multiply $\Omega$-foliated formations with $r$-direction $\varphi$ such that $\varphi_0\leq\varphi$, $\varphi (A)\subseteq\mathfrak G_{A'}\mathfrak G_{A}$ for all $A\in\mathfrak I$ whose lattice of all $n$-multiply $\Omega$-foliated subformations with direction $\varphi$ is Boolean.
@article{DM_2002_14_3_a4,
author = {Yu. A. Skachkova},
title = {Boolean lattices of multiply $\Omega$-foliated formations},
journal = {Diskretnaya Matematika},
pages = {42--46},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a4/}
}
Yu. A. Skachkova. Boolean lattices of multiply $\Omega$-foliated formations. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 42-46. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a4/