On the periodicity of the sequence of states of an automaton corresponding to the initial state and the input periodic sequence
Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 54-64
We introduce a formalisation of the intuitive notion of almost periodicity of elements of a finite alphabet, the measure of approximate period of this sequence. We obtain a lower bound of the measure of approximate period of the sequence of states of an automaton for a given initial state and a given periodic input sequence. On the base of this estimate, we obtain a lower bound for the measures of approximate periods of output sequences of automata modelling the functioning of shift registers.
@article{DM_2002_14_2_a5,
author = {A. V. Babash},
title = {On the periodicity of the sequence of states of an automaton corresponding to the initial state and the input periodic sequence},
journal = {Diskretnaya Matematika},
pages = {54--64},
year = {2002},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_2_a5/}
}
TY - JOUR AU - A. V. Babash TI - On the periodicity of the sequence of states of an automaton corresponding to the initial state and the input periodic sequence JO - Diskretnaya Matematika PY - 2002 SP - 54 EP - 64 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/DM_2002_14_2_a5/ LA - ru ID - DM_2002_14_2_a5 ER -
A. V. Babash. On the periodicity of the sequence of states of an automaton corresponding to the initial state and the input periodic sequence. Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 54-64. http://geodesic.mathdoc.fr/item/DM_2002_14_2_a5/
[1] Trakhtenbrot B. A., Barzdin Ya. M., Konechnye avtomaty (povedenie i sintez), Nauka, Moskva, 1970 | MR
[2] Berks A. V., Rait D. B., “Teoriya logicheskikh setei”, Kibern. sb., 4 (1962), 233–255
[3] Kobrinskii N. E., Trakhtenbrot B. A., Vvedenie v teoriyu konechnykh avtomatov, Nauka, Moskva, 1962
[4] Babash A. V., “Priblizhennye modeli perestanovochnykh avtomatov”, Diskretnaya matematika, 9:1 (1997), 103–123 | MR